English

Find dydx, if x = em, y = em Solution: Given, x = em and y = em Now, y = em Diff.w.r.to m, dydm=emd□dm ∴ dydm=em⋅12m .....(i) Now, x = em Diff.w.r.to m, dxdm=□ .....(ii) Now, dydx=dydx□ ∴ dydx=em□em - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`

Fill in the Blanks
Sum

Solution

Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"sqrt("m"))/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm"` = em    .....(ii)

Now, `("d"y)/("d"x)` = `(("d"y)/("d"m))/(("d"x)/("dm"))`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/(2sqrt("m")))/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`

shaalaa.com
Derivatives of Parametric Functions
  Is there an error in this question or solution?
Chapter 1.3: Differentiation - Q.6

RELATED QUESTIONS

Find `"dy"/"dx"`, if x = 2at2 , y = at4


Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`


Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`


Find `"dy"/"dx"`, if Differentiate 5x with respect to log x


Solve the following.

If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`


If x = `(4t)/(1 + t^2),  y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.


If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`


If x = `y + 1/y`, then `dy/dx` = ____.


If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`


If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`


If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)` 


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


If x = f(t) and y = g(t) are differentiable functions of t, then prove that:

`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`

Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.


Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`


If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.


 Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`


Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`


Find `dy/dx` if,  `x = e^(3t), y = e^((4t + 5))`


Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×