English

If x sin(a + y) + sin a cos(a + y) = 0 then show that dydx=sin2(a+y)sina - Mathematics and Statistics

Advertisements
Advertisements

Question

If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`

Sum

Solution

x sin(a + y) + sin a cos(a + y) = 0     .......(i)

`x.cos("a" + y)*"d"/("d"x)("a" + y) + sin("a" + y)*"d"/("d"x)(x) + sin"a"[-sin("a" + y)]*"d"/("d"x)("a" + y)` = 0

∴ `xcos("a" + y )("d"y)/("d"x) + sin("a" + y)(1) - sin("a" + y)("d"y)/("d"x)` = 0

∴ `[x cos("a" + y) - sin "a" sin("a" + y)]("d"y)/("d"x)` = − sin(a + y)   .......(ii)

From (i), we get

x = `(-sin"a"cos("a" + y))/(sin("a" + y))`

Substituting the value of x in (ii), we get

`[(-sin"a"cos("a" + y))/(sin("a" + y))*cos("a" + y) - sin"a"sin("a" + y)]("d"y)/("d"x)` = − sin(a + y)

∴ `-sin"a"[(cos^2("a" + y))/(sin("a" + y)) + sin("a" + y)]("d"y)/("d"x)` = − sin(a + y)

∴ `(-sin"a"[cos^2("a" + y) + sin^2("a" + y)])/(sin("a" + y))("d"y)/("d"x)` − sin(a + y)

∴ `-(sin"a"(1))/(sin("a" + y))*("d"y)/("d"x)` = − sin(a + y)

∴ `("d"y)/("d"x) = sin("a" + y) [(sin("a" + y))/(sin"a")]`

∴ `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`

shaalaa.com
Derivatives of Parametric Functions
  Is there an error in this question or solution?
Chapter 2.1: Differentiation - Short Answers II

RELATED QUESTIONS

Find `"dy"/"dx"`, if x = at2, y = 2at


Find `"dy"/"dx"`, if x = 2at2 , y = at4


Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`


Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`


Find `"dy"/"dx"`, if Differentiate 5x with respect to log x


Solve the following.

If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`


If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`


Choose the correct alternative.

If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`


If x = `y + 1/y`, then `dy/dx` = ____.


Find `"dy"/"dx"` if x = 5t2, y = 10t.  


Choose the correct alternative:

If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ? 


If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`


State whether the following statement is True or False:

If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`


If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`


Find `dy/dx`  if,  `x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


Find the derivative of 7x w.r.t.x7


Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`

Hence, find `d/dx(tan^-1x)`.


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`


Find `dy/dx if, x = e^(3t),y=e^((4t+5))`


Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`


Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`


Find `dy/dx` if,  `x = e^(3t), y = e^((4t + 5))`


Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×