Advertisements
Advertisements
Question
If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`
Solution
x sin(a + y) + sin a cos(a + y) = 0 .......(i)
`x.cos("a" + y)*"d"/("d"x)("a" + y) + sin("a" + y)*"d"/("d"x)(x) + sin"a"[-sin("a" + y)]*"d"/("d"x)("a" + y)` = 0
∴ `xcos("a" + y )("d"y)/("d"x) + sin("a" + y)(1) - sin("a" + y)("d"y)/("d"x)` = 0
∴ `[x cos("a" + y) - sin "a" sin("a" + y)]("d"y)/("d"x)` = − sin(a + y) .......(ii)
From (i), we get
x = `(-sin"a"cos("a" + y))/(sin("a" + y))`
Substituting the value of x in (ii), we get
`[(-sin"a"cos("a" + y))/(sin("a" + y))*cos("a" + y) - sin"a"sin("a" + y)]("d"y)/("d"x)` = − sin(a + y)
∴ `-sin"a"[(cos^2("a" + y))/(sin("a" + y)) + sin("a" + y)]("d"y)/("d"x)` = − sin(a + y)
∴ `(-sin"a"[cos^2("a" + y) + sin^2("a" + y)])/(sin("a" + y))("d"y)/("d"x)` − sin(a + y)
∴ `-(sin"a"(1))/(sin("a" + y))*("d"y)/("d"x)` = − sin(a + y)
∴ `("d"y)/("d"x) = sin("a" + y) [(sin("a" + y))/(sin"a")]`
∴ `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`
RELATED QUESTIONS
Find `"dy"/"dx"`, if x = at2, y = 2at
Find `"dy"/"dx"`, if x = 2at2 , y = at4
Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`
Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`
Find `"dy"/"dx"`, if Differentiate 5x with respect to log x
Solve the following.
If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`
If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`
Choose the correct alternative.
If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`
If x = `y + 1/y`, then `dy/dx` = ____.
Find `"dy"/"dx"` if x = 5t2, y = 10t.
Choose the correct alternative:
If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ?
If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`
State whether the following statement is True or False:
If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`
If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`
Find `dy/dx` if, `x = e^(3t) , y = e^sqrtt`
Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`
Find the derivative of 7x w.r.t.x7
Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`
Hence, find `d/dx(tan^-1x)`.
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`
Find `dy/dx if, x = e^(3t),y=e^((4t+5))`
Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`
Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`
Find `dy/dx` if, `x = e^(3t), y = e^((4t + 5))`
Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.