हिंदी

Find dydxdydx, if x = e3t, y = ete(4t+5) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`

योग

उत्तर

x = e3t 

Differentiating both sides w.r.t. t, we get

`"dx"/"dt" = "e"^"3t" * (3) = 3 "e"^"3t"`  

y = `"e"^(4"t" + 5)`

Differentiating both sides w.r.t. t, we get

`"dy"/"dt" = "e"^((4"t" + 5)) xx 4`

`= 4 * "e"^((4"t" + 5))`

∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt"))`

= `(4 * "e"^(4"t" + 5))/(3* "e"^(3"t"))`

`= 4/3 e^(4"t" + 5 - 3"t")`

`= 4/3 "e"^("t" + 5)`

shaalaa.com
Derivatives of Parametric Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - EXERCISE 3.5 [पृष्ठ ९७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
EXERCISE 3.5 | Q 1. 3) | पृष्ठ ९७

संबंधित प्रश्न

Find `"dy"/"dx"`, if x = 2at2 , y = at4


Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`


Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`


Find `"dy"/"dx"`, if Differentiate 5x with respect to log x


Solve the following.

If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`


If x = `(4t)/(1 + t^2),  y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.


If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`


Find `"dy"/"dx"` if x = 5t2, y = 10t.  


If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`


Choose the correct alternative:

If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ? 


If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`


Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`


Find `dy/dx`  if,  `x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`


 Find `dy/dx` if,

`x = e ^(3^t), y = e^((4t + 5))`


Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`


 Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`


Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×