English

Find all points of discontinuity of the function f(t) = tt1t2+t-2, where t = 1x-1 - Mathematics

Advertisements
Advertisements

Question

Find all points of discontinuity of the function f(t) = `1/("t"^2 + "t" - 2)`, where t = `1/(x - 1)`

Sum

Solution

We have, f(t) = `1/("t"^2 + "t" - 2)`

Where t = `1/(x - 1)`

∴ f(t) = `1/((1/(x - 1))^2 + 1/(x - 1) - 2)`

= `(x - 1)^2/(1 + (x - 1) - 2(x - 1)^2)`

= `(x - 1)^2/(-(2x^2 - 5x + 2))`

= `(x - 1)^2/((2x - 1)(2 - x))`

So, f(t) is discontinuous at 2x – 1 = 0

⇒ x = `1/2` and 2 – x = 0

⇒ x = 2

Also f(t) is discontinuous at x = 1, where t = `1/(x - 1)` is discontinuous.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 109]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 18 | Page 109

RELATED QUESTIONS

Examine the continuity of the function f(x) = 2x2 – 1 at x = 3.


Prove that the function `f(x) = x^n` is continuous at x = n, where n is a positive integer.


Is the function f defined by f(x)= `{(x, if x<=1),(5, if x > 1):}`  continuous at x = 0? At x = 1? At x = 2?


Find all point of discontinuity of f, where f is defined by `f (x) = {(2x + 3, if x<=2),(2x - 3, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x+1, if x>=1),(x^2+1, if x < 1):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(x^3 - 3, if x <= 2),(x^2 + 1, if x > 2):}`


Is the function defined by `f(x) = {(x+5, if x <= 1),(x -5, if x > 1):}` a continuous function?


Determine if f defined by `f(x) = {(x^2 sin  1/x, "," if x != 0),(0, "," if x = 0):}` is a continuous function?


Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.


Find the value of constant ‘k’ so that the function f (x) defined as

f(x) = `{((x^2 -2x-3)/(x+1), x != -1),(k, x != -1):}`

is continous at x = -1


Prove that the function 

\[f\left( x \right) = \begin{cases}\frac{x}{\left| x \right| + 2 x^2}, & x \neq 0 \\ k , & x = 0\end{cases}\]  remains discontinuous at x = 0, regardless the choice of k.

For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 


Show that the function f given by:

`f(x)={((e^(1/x)-1)/(e^(1/x)+1),"if",x,!=,0),(-1,"if",x,=,0):}"`

is discontinuous at x = 0.


If f(x) = `{{:("a"x + 1,  "if"  x ≥ 1),(x + 2,  "if"  x < 1):}` is continuous, then a should be equal to ______.


`lim_("x" -> pi/2)` [sinx] is equal to ____________.


The domain of the function f(x) = `""^(24 - x)C_(3x - 1) + ""^(40 - 6x)C_(8x - 10)` is


The function f defined by `f(x) = {{:(x, "if"  x ≤ 1),(5, "if"  x > 1):}` discontinuous at x equal to


How many point of discontinuity for the following function for x ∈ R

`f(x) = {{:(x + 1",", if x ≥ 1),(x^2 + 1",", if x < 1):}`


`f(x) = {{:(x^3 - 3",", if x < 2),(x^2 + 1",", if x > 2):}` has how many point of discontinuity


If function f(x) = `{{:((asinx + btanx - 3x)/x^3,",", x ≠ 0),(0,",", x = 0):}` is continuous at x = 0 then (a2 + b2) is equal to ______.


If functions g and h are defined as

g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`

and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`

If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.


If f(x) = `{{:((log_(sin|x|) cos^2x)/(log_(sin|3x|) cos  x/2), |x| < π/3; x ≠ 0),(k, x = 0):}`, then value of k for which f(x) is continuous at x = 0 is ______.


The graph of the function f is shown below.

Of the following options, at what values of x is the function f NOT differentiable?


Consider the graph `y = x^(1/3)`


Statement 1: The above graph is continuous at x = 0

Statement 2: The above graph is differentiable at x = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×