English

Prove that the function f(x)=xn is continuous at x = n, where n is a positive integer. - Mathematics

Advertisements
Advertisements

Question

Prove that the function `f(x) = x^n` is continuous at x = n, where n is a positive integer.

Sum

Solution

f(x) = xn

`lim_(x->n)` f(x) = `lim_(x -> n)` xn = nn

f(n) = nn

`lim_(x -> n)` f(x) = f(n)

f is continuous at x = n. Where n is a positive integer.

⇒ f is continuous at n ∈ N

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.1 [Page 159]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.1 | Q 4 | Page 159

RELATED QUESTIONS

Show that the function `f(x)=|x-3|,x in R` is continuous but not differentiable at x = 3.


Find the values of p and q for which

f(x) = `{((1-sin^3x)/(3cos^2x),`

is continuous at x = π/2.


Examine the continuity of the function f(x) = 2x2 – 1 at x = 3.


Is the function f defined by f(x)= `{(x, if x<=1),(5, if x > 1):}`  continuous at x = 0? At x = 1? At x = 2?


Find all point of discontinuity of f, where f is defined by `f (x) = {(2x + 3, if x<=2),(2x - 3, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|+3, if x<= -3),(-2x, if -3 < x < 3),(6x + 2, if x >= 3):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|/x , if x != 0),(0, if x = 0):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x+1, if x>=1),(x^2+1, if x < 1):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x^10 - 1, if x<=1),(x^2, if x > 1):}`


Is the function defined by `f(x) = {(x+5, if x <= 1),(x -5, if x > 1):}` a continuous function?


Find the points of discontinuity of f, where `f (x) = {(sinx/x, if x<0),(x + 1, if x >= 0):}`


Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.


Determine the value of the constant 'k' so that function f(x) `{((kx)/|x|, ","if  x < 0),(3"," , if x >= 0):}` is continuous at x = 0


For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?


Find the relationship between 'a' and 'b' so that the function 'f' defined by 

\[f\left( x \right) = \begin{cases}ax + 1, & \text{ if }  x \leq 3 \\ bx + 3, & \text{ if } x > 3\end{cases}\] is continuous at x = 3.

 


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}x^{10} - 1, & \text{ if }  x \leq 1 \\ x^2 , & \text{ if } x > 1\end{cases}\]


Find the point of discontinuity, if any, of the following function: \[f\left( x \right) = \begin{cases}\sin x - \cos x , & \text{ if }  x \neq 0 \\ - 1 , & \text{ if }  x = 0\end{cases}\]


The number of discontinuous functions y(x) on [-2, 2] satisfying x2 + y2 = 4 is ____________.


Let f (x) `= (1 - "tan x")/(4"x" - pi), "x" ne pi/4, "x" in (0, pi/2).` If f(x) is continuous in `(0, pi/2), "then f"(pi/4) =` ____________.


The function `f(x) = (x^2 - 25)/(x + 5)` is continuous at x =


The point of discountinuity of the function `f(x) = {{:(2x + 3",", x ≤ 2),(2x - 3",", x > 2):}` is are


Sin |x| is a continuous function for


Let a, b ∈ R, b ≠ 0. Define a function

F(x) = `{{:(asin  π/2(x - 1)",", "for"  x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`

If f is continuous at x = 0, then 10 – ab is equal to ______.


If function f(x) = `{{:((asinx + btanx - 3x)/x^3,",", x ≠ 0),(0,",", x = 0):}` is continuous at x = 0 then (a2 + b2) is equal to ______.


If functions g and h are defined as

g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`

and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`

If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.


If f(x) = `{{:((log_(sin|x|) cos^2x)/(log_(sin|3x|) cos  x/2), |x| < π/3; x ≠ 0),(k, x = 0):}`, then value of k for which f(x) is continuous at x = 0 is ______.


Find the value of k for which the function f given as

f(x) =`{{:((1 - cosx)/(2x^2)",", if x ≠ 0),(       k",", if x = 0 ):}` 

is continuous at x = 0.


The graph of the function f is shown below.

Of the following options, at what values of x is the function f NOT differentiable?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×