English

For what value of λ is the function f ( x ) = { λ ( x 2 − 2 x ) , if x ≤ 0 4 x + 1 , if x > 0 continuous at x = 0? What about continuity at x = ± 1? - Mathematics

Advertisements
Advertisements

Question

For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?

Sum

Solution

The given function f is \[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]

If f is continuous at x = 0, then

Therefore, there is no value of λ for which f(x) is continuous at x = 0.

At x = 1,

f (1) = 4x + 1 = 4 × 1 + 1 = 5

Therefore, for any values of λf is continuous at x = 1

At x = -1, we have

f (-1) =

\[\lambda\left( 1 + 2 \right) = 3\lambda\]

\[\lim_{x \to - 1} \lambda\left( 1 + 2 \right) = 3\lambda\]

\[ \therefore \lim_{x \to - 1} f\left( x \right) = f\left( - 1 \right)\]

Therefore, for any values of λ,  f is continuous at x = -1

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.1 | Q 42 | Page 21

RELATED QUESTIONS

Discuss the continuity of the following functions. If the function have a removable discontinuity, redefine the function so as to remove the discontinuity

`f(x)=(4^x-e^x)/(6^x-1)`  for x ≠ 0

         `=log(2/3) ` for x=0


Find the values of p and q for which

f(x) = `{((1-sin^3x)/(3cos^2x),`

is continuous at x = π/2.


Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.


Examine the continuity of the function f(x) = 2x2 – 1 at x = 3.


Prove that the function `f(x) = x^n` is continuous at x = n, where n is a positive integer.


Find all point of discontinuity of f, where f is defined by `f (x) = {(2x + 3, if x<=2),(2x - 3, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|+3, if x<= -3),(-2x, if -3 < x < 3),(6x + 2, if x >= 3):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|/x , if x != 0),(0, if x = 0):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x/|x|, if x<0),(-1, if x >= 0):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(x^3 - 3, if x <= 2),(x^2 + 1, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x^10 - 1, if x<=1),(x^2, if x > 1):}`


Is the function defined by `f(x) = {(x+5, if x <= 1),(x -5, if x > 1):}` a continuous function?


Examine the continuity of f, where f is defined by `f(x) = {(sin x - cos x, if x != 0),(-1, "," if x = 0):}`


Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.


Using mathematical induction prove that  `d/(dx) (x^n) = nx^(n -1)` for all positive integers n.


Determine the value of the constant 'k' so that function f(x) `{((kx)/|x|, ","if  x < 0),(3"," , if x >= 0):}` is continuous at x = 0


Show that the function f(x) = `{(x^2, x<=1),(1/2, x>1):}` is continuous at x = 1 but not differentiable.


Find the relationship between 'a' and 'b' so that the function 'f' defined by 

\[f\left( x \right) = \begin{cases}ax + 1, & \text{ if }  x \leq 3 \\ bx + 3, & \text{ if } x > 3\end{cases}\] is continuous at x = 3.

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\left| x \right| + 3 , & \text{ if } x \leq - 3 \\ - 2x , & \text { if }  - 3 < x < 3 \\ 6x + 2 , & \text{ if }  x > 3\end{cases}\]

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}- 2 , & \text{ if }& x \leq - 1 \\ 2x , & \text{ if } & - 1 < x < 1 \\ 2 , & \text{ if }  & x \geq 1\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou: 

\[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x} , & x < \frac{\pi}{2} \\ 3 , & x = \frac{\pi}{2} \\ \frac{3 \tan 2x}{2x - \pi}, & x > \frac{\pi}{2}\end{cases}\]

The function f (x) = tan x is discontinuous on the set

 


Find the point of discontinuity, if any, of the following function: \[f\left( x \right) = \begin{cases}\sin x - \cos x , & \text{ if }  x \neq 0 \\ - 1 , & \text{ if }  x = 0\end{cases}\]


 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 


Show that the function f given by:

`f(x)={((e^(1/x)-1)/(e^(1/x)+1),"if",x,!=,0),(-1,"if",x,=,0):}"`

is discontinuous at x = 0.


Find all points of discontinuity of the function f(t) = `1/("t"^2 + "t" - 2)`, where t = `1/(x - 1)`


If f(x) `= sqrt(4 + "x" - 2)/"x", "x" ne 0` be continuous at x = 0, then f(0) = ____________.


The function f defined by `f(x) = {{:(x, "if"  x ≤ 1),(5, "if"  x > 1):}` discontinuous at x equal to


`f(x) = {{:(x^3 - 3",", if x < 2),(x^2 + 1",", if x > 2):}` has how many point of discontinuity


`f(x) = {{:(x^10 - 1",", if x ≤ 1),(x^2",", if x > 1):}` is discontinuous at


Let a, b ∈ R, b ≠ 0. Define a function

F(x) = `{{:(asin  π/2(x - 1)",", "for"  x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`

If f is continuous at x = 0, then 10 – ab is equal to ______.


If function f(x) = `{{:((asinx + btanx - 3x)/x^3,",", x ≠ 0),(0,",", x = 0):}` is continuous at x = 0 then (a2 + b2) is equal to ______.


If functions g and h are defined as

g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`

and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`

If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.


Find the value of k for which the function f given as

f(x) =`{{:((1 - cosx)/(2x^2)",", if x ≠ 0),(       k",", if x = 0 ):}` 

is continuous at x = 0.


If f(x) = `{{:((kx)/|x|"," if x < 0),(  3","   if x ≥ 0):}` is continuous at x = 0, then the value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×