English

If F ( X ) = 1 − Sin X ( π − 2 X ) 2 , When X ≠ π/2 and F (π/2) = λ, Then F (X) Will Be Continuous Function at X= π/2, Where λ = (A) 1/8 (B) 1/4 (C) 1/2 (D) None of Thes - Mathematics

Advertisements
Advertisements

Question

If  \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =

Options

  • 1/8

  • 1/4

  • 1/2

  • none of thes

MCQ

Solution

\[\frac{1}{8}\]

 If \[f\left( x \right)\] is continuous at  \[x = \frac{\pi}{2}\] , then

\[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]
\[\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left( \pi - 2x \right)^2} = f\left( \frac{\pi}{2} \right)\]     ...(1)

Suppose 

\[\left( \frac{\pi}{2} - x \right) = t\] then
\[\lim_{t \to 0} \left[ \frac{1 - \sin \left( \frac{\pi}{2} - t \right)}{\left( 2t \right)^2} \right] = f\left( \frac{\pi}{2} \right) \left[ \text{ From eq }. (1) \right]\]
\[ \Rightarrow \lim_{t \to 0} \left[ \frac{1 - \cos t}{4 t^2} \right] = f\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \frac{1}{4} \lim_{t \to 0} \left[ \frac{2 \sin^2 \left( \frac{t}{2} \right)}{t^2} \right] = f\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \frac{1}{4} \lim_{t \to 0} \left[ \frac{\frac{2}{4} \sin^2 \left( \frac{t}{2} \right)}{\frac{t^2}{4}} \right] = f\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left[ \frac{\sin^2 \left( \frac{t}{2} \right)}{\frac{t^2}{4}} \right] = f\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left[ \frac{\sin \left( \frac{t}{2} \right)}{\frac{t}{2}} \right]^2 = f\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow f\left( \frac{\pi}{2} \right) = \lambda = \frac{1}{8}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 22 | Page 45

RELATED QUESTIONS

A function f (x) is defined as
f (x) = x + a, x < 0
= x,       0 ≤x ≤ 1
= b- x,   x ≥1
is continuous in its domain.
Find a + b.


Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Discuss the continuity of the following function:

f (x) = sin x × cos x


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):}  " at x ="  pi/2` 


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]

 


Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]


Let  \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.

 


If  \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\]   is continuous at x = 0, find k.


Extend the definition of the following by continuity 

\[f\left( x \right) = \frac{1 - \cos7 (x - \pi)}{5 (x - \pi )^2}\]  at the point x = π.

If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


Show that f (x) = cos x2 is a continuous function.


Show that f (x) = | cos x | is a continuous function.

 

Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\]  is continuous at x = 0 or not.

 


If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =

 


If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 


The value of f (0), so that the function

\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by 


Find the values of a and b so that the function

\[f\left( x \right)\begin{cases}x^2 + 3x + a, & \text { if } x \leq 1 \\ bx + 2 , &\text {  if } x > 1\end{cases}\] is differentiable at each x ∈ R.

If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\] 


The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.


If f.g is continuous at x = a, then f and g are separately continuous at x = a.


`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×