मराठी

Examine sin |x| is a continuous function. - Mathematics

Advertisements
Advertisements

प्रश्न

Examine sin |x| is a continuous function.

बेरीज

उत्तर

Let f(x) = sin `abs x`

x = c `in` on R

`lim_(x -> c)  f(x) = lim_(x -> c)  (sin abs x) = sin abs c`

f(c) = sin `abs c`

Hence, f is a continuous function on x = c `in` R.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.1 [पृष्ठ १६१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.1 | Q 33 | पृष्ठ १६१

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x),  "," if x <= 0),(4x+ 1, "," if x > 0):}`  continuous at x = 0? What about continuity at x = 1?


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):}  " at x ="  pi/2` 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Show that the function defined by f (x) = cos (x2) is a continuous function.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if }  x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.


If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if }  }  1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.

 

Discuss the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x}{\left| x \right|}, & x \neq 0 \\ 0 , & x = 0\end{array} . \right.\]

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if }  x = 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}2 , & \text{ if }  x \leq 3 \\ ax + b, & \text{ if }  3 < x < 5 \\ 9 , & \text{ if }  x \geq 5\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


Show that f (x) = cos x2 is a continuous function.


If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

The value of f (0), so that the function

\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by 


The function 

\[f\left( x \right) = \begin{cases}x^2 /a , & 0 \leq x < 1 \\ a , & 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \sqrt{2} \leq x < \infty\end{cases}\]is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are

 


Find the values of a and b so that the function

\[f\left( x \right)\begin{cases}x^2 + 3x + a, & \text { if } x \leq 1 \\ bx + 2 , &\text {  if } x > 1\end{cases}\] is differentiable at each x ∈ R.

If  \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of

\[\lim_{x \to 4} \frac{f\left( x \right) - f\left( 4 \right)}{x - 4} .\]

The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


Let f (x) = |cos x|. Then,


The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.


The function f(x) = `"e"^|x|` is ______.


`lim_("x"->0) (1 - "cos x")/"x"`  is equal to ____________.

`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.


The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


The function f(x) = 5x – 3 is continuous at x =


The function f(x) = x2 – sin x + 5 is continuous at x =


Find the values of `a` and ` b` such that the function by:

`f(x) = {{:(5",", if  x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`

is a continuous function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×