Advertisements
Advertisements
प्रश्न
The function f (x) = |cos x| is
पर्याय
everywhere continuous and differentiable
everywhere continuous but not differentiable at (2n + 1) π/2, n ∈ Z
neither continuous nor differentiable at (2n + 1) π/2, n ∈ Z
none of these
उत्तर
We have,
\[f\left( x \right) = \left| \cos x \right|\]
`⇒ f(x) ={(cosx , 2npile x < (4n +1)_2^pi),(0, x= (4n +1)_2^pi),(-cos x, (4n +1)_2^pi < x< (4n +3)^_2^pi),(0,x = (4n + 3)_2^pi),(cos x, (4n +3)_2^pi < x le (2n +2)pi):}`
\[\text { When, x is in first quadrant, i . e . 2n}\pi \leq x < \left( 4n + 1 \right)\frac{\pi}{2} , \text { we have} \]
\[ f\left( x \right) = \text { cos x which being a trigonometrical function is continuous and differentiable in} \left( 2n\pi, \left( 4n + 1 \right)\frac{\pi}{2} \right)\]
\[\text { When, x is in second quadrant or in third quadrant, i . e }. , \left( 4n + 1 \right)\frac{\pi}{2} < x < \left( 4n + 3 \right)\frac{\pi}{2} , we have\]
\[ f\left( x \right) = - \text { cos x which being a trigonometrical function is continuous and differentiable in } \left( \left( 4n + 1 \right)\frac{\pi}{2}, \left( 4n + 3 \right)\frac{\pi}{2} \right)\]
\[\text { When, x is in fourth quadrant, i . e} . , \left( 4n + 3 \right)\frac{\pi}{2} < x \leq \left( 2n + 2 \right)\pi ,\text { we have }\]
\[ f\left( x \right) =\text{cos x which being a trigonometrical function is continuous and differentiable in } \left( \left( 4n + 3 \right)\frac{\pi}{2}, \left( 2n + 2 \right)\pi \right)\]
\[\text { Thus possible point of non - differentiability of } f\left( x \right)\text { are x} = \left( 4n + 1 \right)\frac{\pi}{2}, \left( 4n + 3 \right)\frac{\pi}{2}\]
\[\text { Now, LHD } \left[ \text { at x }= \left( 4n + 1 \right)\frac{\pi}{2} \right] = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{f\left( x \right) - f\left( \left( 4n + 1 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{\cos x - 0}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{- \sin x}{1 - 0} \left[\text { By L'Hospital rule } \right]\]
\[ = - 1\]
\[\text { And RHD } \left( \text { at x } = \left( 4n + 1 \right)\frac{\pi}{2} \right) = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{f\left( x \right) - f\left( \left( 4n + 1 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{- \cos x - 0}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{\sin x}{1 - 0} \left[ \text { By L'Hospital rule} \right]\]
\[ = 1\
\[ \therefore \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} f\left( x \right) \neq \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} f\left( x \right)\]
\[\text { So }f\left( x \right)\text { is not differentiable at x }= \left( 4n + 1 \right)\frac{\pi}{2}\]
\[\text { Now, LHD} \left[\text { at x } = \left( 4n + 3 \right)\frac{\pi}{2} \right] = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{f\left( x \right) - f\left( \left( 4n + 3 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} \frac{- \cos x - 0}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} \frac{\sin x}{1 - 0} \left[\text { By L'Hospital rule }\right]\]
\[ = 1\]
\[\text { And RHD } \left( \text { at x } = \left( 4n + 3 \right)\frac{\pi}{2} \right) = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{f\left( x \right) - f\left( \left( 4n + 3 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{\cos x - 0}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{- \sin x}{1 - 0} \left[\text { By L'Hospital rule} \right]\]
\[ = - 1\
\[ \therefore \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} f\left( x \right) \neq \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} f\left( x \right)\]
\[\text { So} f\left( x \right) \text { is not differentiable at x} = \left( 4n + 3 \right)\frac{\pi}{2}\]
\[\text { Therefore} , f\left( x \right)\text { is neither differentiable at }\left( 4n + 1 \right)\frac{\pi}{2} \text { nor at } \left( 4n + 3 \right)\frac{\pi}{2}\]
\[\text { i . e } . f\left( x \right) \text { is not differentiable at odd multiples of } \frac{\pi}{2}\]
\[\text { i . e .} f\left( x \right) \text { is not differentiable at x }= \left( 2n + 1 \right)\frac{\pi}{2}\]
\[\text { Therefore, f(x) is everywhere continuous but not differentiable at } \left( 2n + 1 \right)\frac{\pi}{2} .\]
APPEARS IN
संबंधित प्रश्न
If f (x) is continuous on [–4, 2] defined as
f (x) = 6b – 3ax, for -4 ≤ x < –2
= 4x + 1, for –2 ≤ x ≤ 2
Show that a + b =`-7/6`
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):} " at x =" pi/2`
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at x " = pi`
Show that the function defined by f(x) = |cos x| is a continuous function.
Examine the continuity of the function
\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]
Also sketch the graph of this function.
Find the values of a so that the function
Let \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1
Discuss the continuity of the function
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if } x = 2\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if } x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if } x \neq 0 \\ 3k , & \text{ if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}2 , & \text{ if } x \leq 3 \\ ax + b, & \text{ if } 3 < x < 5 \\ 9 , & \text{ if } x \geq 5\end{cases}\]
If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]
for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].
Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x
Show that f (x) = cos x2 is a continuous function.
What happens to a function f (x) at x = a, if
Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\] is continuous at x = 0 or not.
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\] then f (x) is continuous for all
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
If \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is
Let \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\] The value which should be assigned to f (x) at \[x = \frac{\pi}{4},\]so that it is continuous everywhere is
If the function f (x) defined by \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =
The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is
If f is defined by \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\]
The function f (x) = x − [x], where [⋅] denotes the greatest integer function is
The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is
The function f(x) = `"e"^|x|` is ______.
If f.g is continuous at x = a, then f and g are separately continuous at x = a.
`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.
Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.
The function f(x) = x2 – sin x + 5 is continuous at x =
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`
Find the values of `a` and ` b` such that the function by:
`f(x) = {{:(5",", if x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`
is a continuous function.