Advertisements
Advertisements
Question
Using L'Hospital's rule, evaluate : `lim_(x->0) (x - sinx)/(x^2 sinx)`
Solution
`lim_(x->0) (x-sinx)/(x^2 sinx)`
`= lim_(x-> 0) (1-cos x)/(x^2 cos x + sin x. 2x)`
`= lim_(x->0) (2sin^2 x/2)/(x^2(cos x + (2sinx)/x)) = (2sin^2 x/2)/(4xxx^2/4(cos x + (2sinx)/x))`'
`= lim_(x- > ) 2/(4(cosx + 2))`
`= lim_(x -> 0) 1/(2(3)) = 1/6`
APPEARS IN
RELATED QUESTIONS
Using L ‘Hospital’s Rule, evaluate:
`lim_("x"->pi/2) ("x" "tan""x" - pi/4 . "sec" "x")`
Using L' Hospital's rule, evaluate:
`lim_("x"→0) (1/"x"^2 - cot"x"/"x")`
Using L’Hospital’s Rule, evaluate: limx → 0 ( 1 + sin x )cot x
If f(x) is a quadratic polynomial such that f(0) = 3, f'(2) = 2 and f'(3) = 12 then find f(x)
If f(x) = a sin x – b cos x, `"f'"(pi/4) = sqrt(2) and "f'"(pi/6)` = 2, then find f(x)
If f(2) = 4, f′(2) = 1 then find `lim_(x -> 2) [(x"f"(2) - 2"f"(x))/(x - 2)]`