Advertisements
Advertisements
Question
Using L ‘Hospital’s Rule, evaluate:
`lim_("x"->pi/2) ("x" "tan""x" - pi/4 . "sec" "x")`
Solution
`lim_("x"->pi/2) ["x" "tan""x" - pi/4 . "sec" "x"]`
`= lim_(x->pi/2)[("x sin x" - pi/4)/"cos x"]`
`= lim_(x->pi/2) [("x cos x" + "sin x".1 - 0)/-"sin x"]`
`= lim_(x->pi/2) = ("x cos x" + "sin x")/-"sin x"`
`= (0 + 1)/-1 = -1`
APPEARS IN
RELATED QUESTIONS
Using L'Hospital's rule, evaluate : `lim_(x->0) (x - sinx)/(x^2 sinx)`
Using L' Hospital's rule, evaluate:
`lim_("x"→0) (1/"x"^2 - cot"x"/"x")`
Using L’Hospital’s Rule, evaluate: limx → 0 ( 1 + sin x )cot x
If f(x) is a quadratic polynomial such that f(0) = 3, f'(2) = 2 and f'(3) = 12 then find f(x)
If f(x) = a sin x – b cos x, `"f'"(pi/4) = sqrt(2) and "f'"(pi/6)` = 2, then find f(x)
If f(2) = 4, f′(2) = 1 then find `lim_(x -> 2) [(x"f"(2) - 2"f"(x))/(x - 2)]`