English

If f(2) = 4, f′(2) = 1 then find limx→2[xf(2)-2f(x)x-2] - Mathematics and Statistics

Advertisements
Advertisements

Question

If f(2) = 4, f′(2) = 1 then find `lim_(x -> 2) [(x"f"(2) - 2"f"(x))/(x - 2)]`

Sum

Solution

Put x = 2 + h. Then as x → 2, h → 0.

Also, x – 2 = h

∴ `lim_(x -> 2) (x"f"(2) - 2"f"(x))/(x - 2)`

= `lim_("h" -> 0) ((2 + "h")(2) - 2"f"(2 + "h"))/"h"`

= `lim_("h" -> 0) ("hf"(2) - 2["f"(2 + "h") - "f"(2)])/"h"`

= `lim_("h" -> 0) [("hf"(2))/"h" - (2["f"(2 + "h") - "f"(2)])/"h"]`

= `lim_("h" -> 0) "f"(2) - 2 lim_("h" -> 0) ("f"(2 + "h") - "f"(2))/"h"`  ...[∵ h → 0, ∴ h ≠ 0]

= f(2) – 2f'(2)

= 4 – 2(1)  ...[∵ f(2) = 4, f'(2) = 1]

= 2

shaalaa.com
L' Hospital'S Theorem
  Is there an error in this question or solution?
Chapter 9: Differentiation - Miscellaneous Exercise 9 [Page 195]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 9 Differentiation
Miscellaneous Exercise 9 | Q II. (9) | Page 195
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×