Advertisements
Advertisements
Question
If f(2) = 4, f′(2) = 1 then find `lim_(x -> 2) [(x"f"(2) - 2"f"(x))/(x - 2)]`
Solution
Put x = 2 + h. Then as x → 2, h → 0.
Also, x – 2 = h
∴ `lim_(x -> 2) (x"f"(2) - 2"f"(x))/(x - 2)`
= `lim_("h" -> 0) ((2 + "h")(2) - 2"f"(2 + "h"))/"h"`
= `lim_("h" -> 0) ("hf"(2) - 2["f"(2 + "h") - "f"(2)])/"h"`
= `lim_("h" -> 0) [("hf"(2))/"h" - (2["f"(2 + "h") - "f"(2)])/"h"]`
= `lim_("h" -> 0) "f"(2) - 2 lim_("h" -> 0) ("f"(2 + "h") - "f"(2))/"h"` ...[∵ h → 0, ∴ h ≠ 0]
= f(2) – 2f'(2)
= 4 – 2(1) ...[∵ f(2) = 4, f'(2) = 1]
= 2
APPEARS IN
RELATED QUESTIONS
Using L'Hospital's rule, evaluate : `lim_(x->0) (x - sinx)/(x^2 sinx)`
Using L ‘Hospital’s Rule, evaluate:
`lim_("x"->pi/2) ("x" "tan""x" - pi/4 . "sec" "x")`
Using L' Hospital's rule, evaluate:
`lim_("x"→0) (1/"x"^2 - cot"x"/"x")`
Using L’Hospital’s Rule, evaluate: limx → 0 ( 1 + sin x )cot x
If f(x) is a quadratic polynomial such that f(0) = 3, f'(2) = 2 and f'(3) = 12 then find f(x)
If f(x) = a sin x – b cos x, `"f'"(pi/4) = sqrt(2) and "f'"(pi/6)` = 2, then find f(x)