Advertisements
Advertisements
Question
If f(x) = a sin x – b cos x, `"f'"(pi/4) = sqrt(2) and "f'"(pi/6)` = 2, then find f(x)
Solution
f(x) = a sin x – b cos x
Differentiating w.r.t. x, we get
f'(x) = a cos x – b (– sin x)
f'(x) = a cos x + b sin x
∴ `"f'" (pi/4) = "a" cos (pi/4) + "b" sin (pi/4)`
But, `"f'"(pi/4) = sqrt(2)` ...(given)
∴ `"a" cos pi/4 + "b" sin pi/4 = sqrt(2)`
∴ `"a"(1/sqrt(2)) + "b" (1/sqrt(2)) = sqrt(2)`
∴ `("a" + "b")/(sqrt(2)) = sqrt(2)`
∴ a + b = 2 ...(i)
Also, `"f'"(pi/6) = "a" cos pi/6 + "b" sin pi/6`
But, `"f'" (pi/6)` = 2 ...(given)
∴ `"a" cos pi/6 + "b" sin pi/6` = 2
∴ `"a"(sqrt(3))/2 + "b"(1/2)` = 2
∴ `"a" sqrt(3) + "b"` = 4 ...(ii)
equation (ii) – equation (i), we get
`"a" sqrt(3) - "a"` = 2
∴ `"a"(sqrt(3) - 1)` = 2
∴ a = `2/(sqrt(3) - 1) = (2(sqrt(3) + 1))/(3 - 1)`
∴ a = `sqrt(3) + 1`
Substituting a = `sqrt(3) + 1` in equation (i), we get
`sqrt(3) + 1 + "b"` = 2
`"b" = 1 - sqrt(3)`
Now, f(x) = a sin x – b cos x
∴ f(x) = `(sqrt(3) + 1) sin x + (sqrt(3) - 1) cos x`
APPEARS IN
RELATED QUESTIONS
Using L'Hospital's rule, evaluate : `lim_(x->0) (x - sinx)/(x^2 sinx)`
Using L ‘Hospital’s Rule, evaluate:
`lim_("x"->pi/2) ("x" "tan""x" - pi/4 . "sec" "x")`
Using L' Hospital's rule, evaluate:
`lim_("x"→0) (1/"x"^2 - cot"x"/"x")`
Using L’Hospital’s Rule, evaluate: limx → 0 ( 1 + sin x )cot x
If f(x) is a quadratic polynomial such that f(0) = 3, f'(2) = 2 and f'(3) = 12 then find f(x)
If f(2) = 4, f′(2) = 1 then find `lim_(x -> 2) [(x"f"(2) - 2"f"(x))/(x - 2)]`