Advertisements
Advertisements
प्रश्न
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
उत्तर
Let u = `cos^-1((1 - x^2)/(1 + x^2)) and v = tan^-1x`.
Then we want to find `"du"/"dv"`.
Put x = tanθ.
Then = tan–1 x.
∴ u = `cos^-1((1 - tan^2θ)/(1 + tan^2θ))`
= cos–1(cos2θ)
= 2θ
∴ u = 2tan–1x
∴ `"du"/"dx" = 2."d"/"dx"(tan^-1x)`
= `2 xx (1)/(1 + x^2)`
= `(2)/(1 + x^2)`
Also, v =tan–1x
∴ `"dv"/"dx" = "d"/"dx"(tan^-1x) = (1)/(1 + x^2)`
∴ `"du"/"dv" = (("dy"/"dx"))/(("dv"/"dx")`
= `(((2)/(1 + x^2)))/(((1)/(1 + x^2))`
= 2.
APPEARS IN
संबंधित प्रश्न
If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following.
x3 + x2y + xy2 + y3 = 81
Find `dy/dx` in the following:
sin2 y + cos xy = k
Show that the derivative of the function f given by
Is |sin x| differentiable? What about cos |x|?
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if
Find `dy/dx if x^3 + y^2 + xy = 7`
Find `(dy)/(dx) if y = cos^-1 (√x)`
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"` if x = at2, y = 2at.
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.
Find the nth derivative of the following : cos x
Find the nth derivative of the following : sin (ax + b)
Find the nth derivative of the following : y = eax . cos (bx + c)
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Choose the correct option from the given alternatives :
If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Find `"dy"/"dx"` if, yex + xey = 1
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `2x + 3y = sin x` is:-
y = `e^(x3)`
Find `(d^2y)/(dy^2)`, if y = e4x
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`