Advertisements
Advertisements
प्रश्न
A man, 2m tall, walks at the rate of `1 2/3` m/s towards a street light which is `5 1/3`m above the ground. At what rate is the tip of his shadow moving? At what rate is the length of the shadow changing when he is `3 1/3`m from the base of the light?
उत्तर
Let AB is the height of street light post and CD is the height of the man such that
AB = `5 1/3 = 16/3 "m"` and CD = 2 m
Let BC = x length (the distance of the man from the lamp post) and CE = y is the length of the shadow of the man at any instant.
From the figure, we see that
ΔABE ~ Δ DCE ......[By AAA Similarity]
∴ Taking ratio of their corresponding sides, we get
`"AB"/"CD" = "BE"/"CE"`
⇒ `"AB"/"CD" = ("BC" + "CE")/"CE"`
⇒ `(16/3)/2 = (x + y)/y`
⇒ `8/3 = (x + y)/y`
⇒ 8y = 3x + 3y
⇒ 8y – 3y = 3x
⇒ 5y = 3x
Differentiating both sides w.r.t, t, we get
`"dy"/"dt" = 3 * "dx"/dt"`
⇒ `"dy"/"dt" = 3/5 * "dx"/"dt"`
⇒ `"dy"/"dt" = 3/5 * ((-5)/3)` ......[∵ man is moving in opposite direction]
= – 1 m/s
Hence, the length of shadow is decreasing at the rate of 1 m/s.
Now let u = x + y .....(u = Distance of the tip of shadow from the light post)
Differentiating both sides w.r.t. t, we get
`"du"/"dt" = "dx"/"dt" + "dy"/dt"`
= `(- 1 2/3 - 1)`
= `-(5/3 + 1)`
= `- 8/3`
= `-2 2/3` m/s
Hence, the tip of the shadow is moving at the rate of `2 2/3` m/s towards the light post and the length of shadow decreasing at the rate of 1 m/s.
APPEARS IN
संबंधित प्रश्न
If y = f (u) is a differential function of u and u = g(x) is a differential function of x, then prove that y = f [g(x)] is a differential function of x and `dy/dx=dy/(du) xx (du)/dx`
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?
The radius of an air bubble is increasing at the rate `1/2` cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?
The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) = 0.007x3 – 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is ______.
The total cost C(x) associated with the production of x units of an item is given by C(x) = 0.005x3 – 0.02x2 + 30x + 5000. Find the marginal cost when 3 units are produced, whereby marginal cost we mean the instantaneous rate of change of total cost at any level of output.
Find the rate of change of the volume of a sphere with respect to its surface area when the radius is 2 cm ?
Find the rate of change of the area of a circular disc with respect to its circumference when the radius is 3 cm ?
Find the rate of change of the volume of a cone with respect to the radius of its base ?
If y = 7x − x3 and x increases at the rate of 4 units per second, how fast is the slope of the curve changing when x = 2?
The volume of metal in a hollow sphere is constant. If the inner radius is increasing at the rate of 1 cm/sec, find the rate of increase of the outer radius when the radii are 4 cm and 8 cm respectively.
A kite is 120 m high and 130 m of string is out. If the kite is moving away horizontally at the rate of 52 m/sec, find the rate at which the string is being paid out.
The volume of a spherical balloon is increasing at the rate of 25 cm3/sec. Find the rate of change of its surface area at the instant when radius is 5 cm ?
A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/sec. Find the rate at which its area is increasing when radius is 3.2 cm.
The coordinates of the point on the ellipse 16x2 + 9y2 = 400 where the ordinate decreases at the same rate at which the abscissa increases, are
The volume of a sphere is increasing at 3 cm3/sec. The rate at which the radius increases when radius is 2 cm, is
If s = t3 − 4t2 + 5 describes the motion of a particle, then its velocity when the acceleration vanishes, is
A man 2 metres tall walks away from a lamp post 5 metres height at the rate of 4.8 km/hr. The rate of increase of the length of his shadow is
In a sphere the rate of change of surface area is
A 13 m long ladder is leaning against a wall, touching the wall at a certain height from the ground level. The bottom of the ladder is pulled away from the wall, along the ground, at the rate of 2 m/s. How fast is the height on the wall decreasing when the foot of the ladder is 5 m away from the wall?
The rate of change of volume of a sphere with respect to its surface area, when the radius is 2 cm, is ______.
A swimming pool is to be drained for cleaning. If L represents the number of litres of water in the pool t seconds after the pool has been plugged off to drain and L = 200 (10 – t)2. How fast is the water running out at the end of 5 seconds? What is the average rate at which the water flows out during the first 5 seconds?
The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side
The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when side is 10 cm is ______.
The rate of change of volume of a sphere is equal to the rate of change of the radius than its radius equal to ____________.
The radius of a circle is increasing uniformly at the rate of 3 cm per second. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
If equal sides of an isosceles triangle with fixed base 10 cm are increasing at the rate of 4 cm/sec, how fast is the area of triangle increasing at an instant when all sides become equal?
Given that `1/y + 1/x = 1/12` and y decreases at a rate of 1 cms–1, find the rate of change of x when x = 5 cm and y = 1 cm.