मराठी

The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) = 0.007x3 – 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced - Mathematics

Advertisements
Advertisements

प्रश्न

The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) = 0.007x3 – 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced

बेरीज

उत्तर

C(x) = 0.007x3 - 0.003x2 + 15x + 4000

=>  marginal cost = `(dC)/dx`

`= d/dx (0.007 x ^3 - 0.003x ^2 + 15x  + 4000)`

= 0.007 × 3x2 - 0.003 × 2x + 15

`∴ (MC)_(x = 17)`

= {0.007 × 3(17)2} - {0.003 × 2(17)} + 15

= 6.069 - 0.102 + 15

= 20.967a

∴ Marginal cost (when x = 17) = 20.967.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.1 [पृष्ठ १९८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.1 | Q 15 | पृष्ठ १९८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The rate of growth of bacteria is proportional to the number present. If, initially, there were
1000 bacteria and the number doubles in one hour, find the number of bacteria after 2½
hours. 

[Take `sqrt2` = 1.414]


Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?


The radius of an air bubble is increasing at the rate  `1/2`  cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?


The rate of change of the area of a circle with respect to its radius r at r = 6 cm is ______.


Find the rate of change of the volume of a sphere with respect to its diameter ?


The radius of an air bubble is increasing at the rate of 0.5 cm/sec. At what rate is the volume of the bubble increasing when the radius is 1 cm?


A man 2 metres high walks at a uniform speed of 5 km/hr away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases.


The top of a ladder 6 metres long is resting against a vertical wall on a level pavement, when the ladder begins to slide outwards. At the moment when the foot of the ladder is 4 metres from the wall, it is sliding away from the wall at the rate of 0.5 m/sec. How fast is the top-sliding downwards at this instance?
How far is the foot from the wall when it and the top are moving at the same rate?


The surface area of a spherical bubble is increasing at the rate of 2 cm2/s. When the radius of the bubble is 6 cm, at what rate is the volume of the bubble increasing?


Find the point on the curve y2 = 8x for which the abscissa and ordinate change at the same rate ?


The volume of a cube is increasing at the rate of 9 cm3/sec. How fast is the surface area increasing when the length of an edge is 10 cm?


If a particle moves in a straight line such that the distance travelled in time t is given by s = t3 − 6t2+ 9t + 8. Find the initial velocity of the particle ?


The volume of a sphere is increasing at 3 cubic centimeter per second. Find the rate of increase of the radius, when the radius is 2 cms ?


The side of an equilateral triangle is increasing at the rate of \[\frac{1}{3}\] cm/sec. Find the rate of increase of its perimeter ?


Find the surface area of a sphere when its volume is changing at the same rate as its radius ?


If \[V = \frac{4}{3}\pi r^3\] ,  at what rate in cubic units is V increasing when r = 10 and \[\frac{dr}{dt} = 0 . 01\] ?  _________________


A cone whose height is always equal to its diameter is increasing in volume at the rate of 40 cm3/sec. At what rate is the radius increasing when its circular base area is 1 m2?


The distance moved by a particle travelling in straight line in t seconds is given by s = 45t + 11t2 − t3. The time taken by the particle to come to rest is


Each side of an equilateral triangle is increasing at the rate of 8 cm/hr. The rate of increase of its area when side is 2 cm, is


The equation of motion of a particle is s = 2t2 + sin 2t, where s is in metres and is in seconds. The velocity of the particle when its acceleration is 2 m/sec2, is


A man 2 metres tall walks away from a lamp post 5 metres height at the rate of 4.8 km/hr. The rate of increase of the length of his shadow is


In a sphere the rate of change of surface area is


Evaluate:  `int (x(1+x^2))/(1+x^4)dx`


The rate of change of volume of a sphere with respect to its surface area, when the radius is 2 cm, is ______.


If the area of a circle increases at a uniform rate, then prove that perimeter varies inversely as the radius


A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is 10 m/s, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The height of boy is 1.5 m.


A man, 2m tall, walks at the rate of `1 2/3` m/s towards a street light which is `5 1/3`m above the ground. At what rate is the tip of his shadow moving? At what rate is the length of the shadow changing when he is `3 1/3`m from the base of the light?


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when side is 10 cm is ______.


Total revenue in rupees received from the sale of x units of a product is given by R(x)= 3x2+ 36x + 5. The marginal revenue, when x = 15 is ____________.


What is the rate of change of the area of a circle with respect to its radius when, r = 3 cm


A particle moves along the curve 3y = ax3 + 1 such that at a point with x-coordinate 1, y-coordinate is changing twice as fast at x-coordinate. Find the value of a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×