मराठी

A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is 10 m/s, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The - Mathematics

Advertisements
Advertisements

प्रश्न

A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is 10 m/s, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The height of boy is 1.5 m.

बेरीज

उत्तर


Given that height of the kite (h) = 151.5 m

Speed of the kite(V) = 10 m/s

Let FD be the height of the kite and AB be the height of the boy.

Let AF = xm

∴ BG = AF = xm

And `"dx"/"dt"` = 10 m/s

From the figure, we get that

GD = DF – GF

⇒ DF – AB

= (151.5 – 1.5) m = 150 m   ......[∵ AB = GF]

Now in ΔBGD,

BG2 + GD2 = BD2   ......(By Pythagoras Theorem)

⇒ x2 + (150)2 = (250)2

⇒ x2 + 22500 = 62500

⇒ x2 = 62500 – 22500

⇒ x2 = 40000

⇒ x2 = 40000

Let initially the length of the string be y m

∴ In ΔBGD

BG2 + GD2 = BD2

⇒ x2 + (150)2 = y2

Differentiating both sides w.r.t., t, we get

⇒ `2x * "dx"/"dt" + 0 = 2y * "dy"/"dt"`  ......`[because  "dx"/"dt" = 10 "m"/"s"]`

⇒ 2 × 200 × 10 = 2 × 250 × `"dy"/"dt"`

∴ `"dy"/"dt" = (2 xx 200 xx 10)/(2 xx 250)` = 8 m/s

Hence, the rate of change of the length of the string is 8 m/s.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 3 | पृष्ठ १३५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If y = f (u) is a differential function of u and u = g(x) is a differential function of x, then prove that y = f [g(x)] is a differential function of x and `dy/dx=dy/(du) xx (du)/dx`


A point source of light is hung 30 feet directly above a straight horizontal path on which a man of 6 feet in height is walking. How fast will the man’s shadow lengthen and how fast will the tip of shadow move when he is walking away from the light at the rate of 100 ft/min.


The volume of a cube is increasing at the rate of 8 cm3/s. How fast is the surface area increasing when the length of an edge is 12 cm?


The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?


The radius of an air bubble is increasing at the rate  `1/2`  cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?


Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?


The volume of a sphere is increasing at the rate of 8 cm3/s. Find the rate at which its surface area is increasing when the radius of the sphere is 12 cm.


The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2 cm


The total cost C(x) associated with the production of x units of an item is given by C(x) = 0.005x3 – 0.02x2 + 30x + 5000. Find the marginal cost when 3 units are produced, whereby marginal cost we mean the instantaneous rate of change of total cost at any level of output.


Find an angle θ which increases twice as fast as its cosine ?


The surface area of a spherical bubble is increasing at the rate of 2 cm2/s. When the radius of the bubble is 6 cm, at what rate is the volume of the bubble increasing?


A ladder, 5 metre long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides down wards at the rate of 10 cm/sec, then find the rate at which the angle between the floor and ladder is decreasing when lower end of ladder is 2 metres from the wall ?


The radius of a sphere is changing at the rate of 0.1 cm/sec. The rate of change of its surface area when the radius is 200 cm is


A cylindrical vessel of radius 0.5 m is filled with oil at the rate of 0.25 π m3/minute. The rate at which the surface of the oil is rising, is


For what values of x is the rate of increase of x3 − 5x2 + 5x + 8 is twice the rate of increase of x ?


The volume of a sphere is increasing at 3 cm3/sec. The rate at which the radius increases when radius is 2 cm, is


If s = t3 − 4t2 + 5 describes the motion of a particle, then its velocity when the acceleration vanishes, is


The equation of motion of a particle is s = 2t2 + sin 2t, where s is in metres and is in seconds. The velocity of the particle when its acceleration is 2 m/sec2, is


The radius of a circular plate is increasing at the rate of 0.01 cm/sec. The rate of increase of its area when the radius is 12 cm, is


In a sphere the rate of change of volume is


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then how fast is the slope of curve changing when x = 3?


Two men A and B start with velocities v at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being seperated.


The instantaneous rate of change at t = 1 for the function f (t) = te-t + 9 is ____________.


Total revenue in rupees received from the sale of x units of a product is given by R(x)= 3x2+ 36x + 5. The marginal revenue, when x = 15 is ____________.


The rate of change of volume of a sphere is equal to the rate of change of the radius than its radius equal to ____________.


A cylindrical tank of radius 10 feet is being filled with wheat at the rate of 3/4 cubic feet per minute. The then depth of the wheat is increasing at the rate of


A man 1.6 m tall walks at the rate of 0.3 m/sec away from a street light that is 4 m above the ground. At what rate is the tip of his shadow moving? At what rate is his shadow lengthening?


An edge of a variable cube is increasing at the rate of 10 cm/sec. How fast will the volume of the cube increase if the edge is 5 cm long? 


Given that `1/y + 1/x = 1/12` and y decreases at a rate of 1 cms–1, find the rate of change of x when x = 5 cm and y = 1 cm.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×