Advertisements
Advertisements
Question
In a shop X, 30 tins of pure ghee and 40 tins of adulterated ghee which look alike, are kept for sale while in shop Y, similar 50 tins of pure ghee and 60 tins of adulterated ghee are there. One tin of ghee is purchased from one of the randomly selected shops and is found to be adulterated. Find the probability that it is purchased from shop Y. What measures should be taken to stop adulteration?
Solution
Let A be the event that the ghee is adulterated.
Shop X contains 30 pure ghee container and 40 adultered container.
∴ Probability of adultered ghee container = P(A/X) = \[\frac{40}{70} = \frac{4}{7}\]
∴ Probability of adultered ghee container = P(A/Y) = \[\frac{60}{110} = \frac{6}{11}\]
Required Probability, P(Y/A)
APPEARS IN
RELATED QUESTIONS
Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?
If P (A) = \[\frac{6}{11},\] P (B) = \[\frac{5}{11}\] and P (A ∪ B) = \[\frac{7}{11},\] find
A coin is tossed three times. Find P (A/B) in each of the following:
A = At most two tails, B = At least one tail.
A die is thrown three times. Find P (A/B) and P (B/A), if
A = 4 appears on the third toss, B = 6 and 5 appear respectively on first two tosses.
Mother, father and son line up at random for a family picture. If A and B are two events given by A = Son on one end, B = Father in the middle, find P (A/B) and P (B/A).
Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A/B) .
Given the probability that A can solve a problem is 2/3 and the probability that B can solve the same problem is 3/5. Find the probability that none of the two will be able to solve the problem.
Three cards are drawn with replacement from a well shuffled pack of cards. Find the probability that the cards drawn are king, queen and jack.
An anti-aircraft gun can take a maximum of 4 shots at an enemy plane moving away from it. The probabilities of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1 respectively. What is the probability that the gun hits the plane?
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.
A bag contains 3 white, 4 red and 5 black balls. Two balls are drawn one after the other, without replacement. What is the probability that one is white and the other is black?
Tickets are numbered from 1 to 10. Two tickets are drawn one after the other at random. Find the probability that the number on one of the tickets is a multiple of 5 and on the other a multiple of 4.
X is taking up subjects - Mathematics, Physics and Chemistry in the examination. His probabilities of getting grade A in these subjects are 0.2, 0.3 and 0.5 respectively. Find the probability that he gets
(i) Grade A in all subjects
(ii) Grade A in no subject
(iii) Grade A in two subjects.
One bag contains 4 yellow and 5 red balls. Another bag contains 6 yellow and 3 red balls. A ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that ball drawn is yellow.
A bag contains 3 white and 2 black balls and another bag contains 2 white and 4 black balls. One bag is chosen at random. From the selected bag, one ball is drawn. Find the probability that the ball drawn is white.
A bag contains 6 red and 8 black balls and another bag contains 8 red and 6 black balls. A ball is drawn from the first bag and without noticing its colour is put in the second bag. A ball is drawn from the second bag. Find the probability that the ball drawn is red in colour.
When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.
Three digit numbers are formed with the digits 0, 2, 4, 6 and 8. Write the probability of forming a three digit number with the same digits.
If A and B are independent events, then write expression for P(exactly one of A, B occurs).
If one ball is drawn at random from each of three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, then the probability that 2 white and 1 black balls will be drawn is
A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is
A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is
If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =
Mark the correct alternative in the following question:
\[\text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( A \cup B \right) = \frac{4}{5}, \text{ then } P\left( B|\overline{ A } \right) = \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that } P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( B \cap A \right) \text{ equals } \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events with } P\left( A \right) = \frac{3}{5} \text{ and } P\left( B \right) = \frac{4}{9}, \text{ then } P\left( \overline{A} \cap B \right) \text{ equals } \]
A and B are two students. Their chances of solving a problem correctly are `1/3` and `1/4` respectively. If the probability of their making common error is `1/20` and they obtain the same answer, then the probability of their answer to be correct is
An insurance company insured 3000 cyclists, 6000 scooter drivers, and 9000 car drivers. The probability of an accident involving a cyclist, a scooter driver, and a car driver are 0⋅3, 0⋅05 and 0⋅02 respectively. One of the insured persons meets with an accident. What is the probability that he is a cyclist?
A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts the game first.