Advertisements
Advertisements
Question
A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is
Options
\[\frac{64}{64}\]
\[\frac{49}{64}\]
\[\frac{40}{64}\]
\[\frac{24}{64}\]
Solution
\[ \frac{64}{64}\]
\[P\left( \text{ good item } \right) = \frac{10}{16}\]
\[P\left( \text{ defected item } \right) = \frac{6}{16}\]
\[P\left( \text{ either good or defected item } \right) = P\left( \text{ good item } \right) + P\left( \text{ defected item } \right)\]
\[ = \frac{10}{16} + \frac{6}{16}\]
\[ = \frac{16}{16}\]
\[ = 1\]
\[ = \frac{64}{64}\]
APPEARS IN
RELATED QUESTIONS
In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from this set and tossed five times. If all the five times, the result was heads, find the probability that the selected coin had heads on both the sides.
In a shop X, 30 tins of pure ghee and 40 tins of adulterated ghee which look alike, are kept for sale while in shop Y, similar 50 tins of pure ghee and 60 tins of adulterated ghee are there. One tin of ghee is purchased from one of the randomly selected shops and is found to be adulterated. Find the probability that it is purchased from shop Y. What measures should be taken to stop adulteration?
Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?
Find the chance of drawing 2 white balls in succession from a bag containing 5 red and 7 white balls, the ball first drawn not being replaced.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a heart and second is red.
Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?
If P (A) = \[\frac{6}{11},\] P (B) = \[\frac{5}{11}\] and P (A ∪ B) = \[\frac{7}{11},\] find
A coin is tossed three times. Find P (A/B) in each of the following:
A = Heads on third toss, B = Heads on first two tosses.
Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.
Two coins are tossed once. Find P (A/B) in each of the following:
A = No tail appears, B = No head appears.
Mother, father and son line up at random for a family picture. If A and B are two events given by A = Son on one end, B = Father in the middle, find P (A/B) and P (B/A).
A dice is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?
A pair of dice is thrown. Find the probability of getting 7 as the sum, if it is known that the second die always exhibits an odd number.
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the first throw results in head, B = the last throw results in tail.
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the number of heads is odd, B = the number of tails is odd.
If A and B are two independent events such that P (`bar A` ∩ B) = 2/15 and P (A ∩`bar B` ) = 1/6, then find P (B).
A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.
An article manufactured by a company consists of two parts X and Y. In the process of manufacture of the part X, 9 out of 100 parts may be defective. Similarly, 5 out of 100 are likely to be defective in the manufacture of part Y. Calculate the probability that the assembled product will not be defective.
A die is thrown thrice. Find the probability of getting an odd number at least once.
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 blue balls.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 p2 .
A and B toss a coin alternately till one of them gets a head and wins the game. If A starts the game, find the probability that B will win the game.
In a family, the husband tells a lie in 30% cases and the wife in 35% cases. Find the probability that both contradict each other on the same fact.
A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.
6 boys and 6 girls sit in a row at random. Find the probability that all the girls sit together.
If A, B and C are independent events such that P(A) = P(B) = P(C) = p, then find the probability of occurrence of at least two of A, B and C.
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is
If P (A ∪ B) = 0.8 and P (A ∩ B) = 0.3, then P \[\left( A \right)\] \[\left( A \right)\] + P \[\left( B \right)\] =
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that } P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3}, P\left( A|B \right) = \frac{1}{4}, \text{ then } P\left( A \cap B \right) \text{ equals} \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that } P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( B \cap A \right) \text{ equals } \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that} P\left( A \right) \neq 0 \text{ and } P\left( B \right) \neq 1,\text{ then } P\left( \overline{ A }|\overline{ B }\right) = \]
Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is
Mark the correct alternative in the following question:
If two events are independent, then
Mark the correct alternative in the following question:
A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number of the die and a spade card is
Mark the correct alternative in the following question:
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is
If two events A and B are such that P (A)
\[\left( \overline{ A } \right)\] = 0.3, P (B) = 0.4 and P (A ∩ B) = 0.5, find P \[\left( B/\overline{ A }\cap \overline{ B } \right)\].