Advertisements
Advertisements
Question
If A and B are two independent events such that P (`bar A` ∩ B) = 2/15 and P (A ∩`bar B` ) = 1/6, then find P (B).
Solution
\[\text{ Let }: \]
\[P\left( A \right) = x \]
\[P\left( B \right) = y\]
\[P\left( \bar{A} \cap B \right) = \frac{2}{15}\]
\[ \Rightarrow P\left( \bar{A} \right) \times P\left( B \right) = \frac{2}{15}\]
\[ \Rightarrow \left( 1 - x \right)y = \frac{2}{15} . . . \left( 1 \right)\]
\[P\left( A \cap \bar{B} \right) = \frac{1}{6}\]
\[ \Rightarrow P\left( A \right) \times P\left( B \right) = \frac{1}{6} \]
\[ \Rightarrow \left( 1 - y \right)x = \frac{1}{6} . . . \left( 2 \right)\]
\[\text{ Subtracting} \left( 2 \right) \text{from} \left( 1 \right), \text{ we get } \]
\[x - y = \frac{1}{30}\]
\[x = y + \frac{1}{30}\]
\[\text {Substituting the value of x in } \left( 2 \right),\text{ we get } \]
\[\left( y + \frac{1}{30} \right)\left( 1 - y \right) = \frac{1}{6}\]
\[ \Rightarrow 30 y^2 - 29y + 4 = 0\]
\[ \Rightarrow y = \frac{1}{6}, \frac{4}{5}\]
APPEARS IN
RELATED QUESTIONS
A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?
A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the probability of
(i) 5 successes?
(ii) at least 5 successes?
(iii) at most 5 successes?
Given that the two numbers appearing on throwing two dice are different. Find the probability of the event 'the sum of numbers on the dice is 4'.
Find the chance of drawing 2 white balls in succession from a bag containing 5 red and 7 white balls, the ball first drawn not being replaced.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a king and the second is an ace.
An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?
Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?
Two coins are tossed once. Find P (A/B) in each of the following:
A = No tail appears, B = No head appears.
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the first throw results in head, B = the last throw results in tail.
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. B and C .
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A
An unbiased die is tossed twice. Find the probability of getting 4, 5, or 6 on the first toss and 1, 2, 3 or 4 on the second toss.
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 blue balls.
The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.
Two dice are thrown together and the total score is noted. The event E, F and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: (1 - p1)p2
A bag contains 6 black and 3 white balls. Another bag contains 5 black and 4 white balls. If one ball is drawn from each bag, find the probability that these two balls are of the same colour.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.
A and B toss a coin alternately till one of them gets a head and wins the game. If A starts the game, find the probability that B will win the game.
A bag contains 4 white balls and 2 black balls. Another contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that
(i) both are white
(ii) both are black
(iii) one is white and one is black
A and B take turns in throwing two dice, the first to throw 10 being awarded the prize, show that if A has the first throw, their chance of winning are in the ratio 12 : 11.
There are 3 red and 5 black balls in bag 'A'; and 2 red and 3 black balls in bag 'B'. One ball is drawn from bag 'A' and two from bag 'B'. Find the probability that out of the 3 balls drawn one is red and 2 are black.
The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.
A four digit number is formed using the digits 1, 2, 3, 5 with no repetitions. Write the probability that the number is divisible by 5.
Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.
Write the probability that a number selected at random from the set of first 100 natural numbers is a cube.
If A and B are independent events, then write expression for P(exactly one of A, B occurs).
A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is
Two dice are thrown simultaneously. The probability of getting a pair of aces is
A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.
Mark the correct alternative in the following question:
If A and B are two events such that P(A) = \[\frac{4}{5}\] , and \[P\left( A \cap B \right) = \frac{7}{10}\] , then P(B|A) =
Choose the correct alternative in the following question:
If A and B are two events associated to a random experiment such that \[P\left( A \cap B \right) = \frac{7}{10} \text{ and } P\left( B \right) = \frac{17}{20}\] , then P(A|B) =
Choose the correct alternative in the following question:
Associated to a random experiment two events A and B are such that
Mark the correct alternative in the following question:
\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]
If A and B are two events such that A ≠ Φ, B = Φ, then
Mark the correct alternative in the following question:
A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number of the die and a spade card is
Mark the correct alternative in the following question:
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is