English

Two Dice Are Thrown Together and the Total Score is Noted. the Event E, F and G Are "A Total of 4", "A Total of 9 Or More", and "A Total Divisible by 5", Respectively. - Mathematics

Advertisements
Advertisements

Question

Two dice are thrown together and the total score is noted. The event EF and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.   

Solution

We have,

S =
{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

n(S) = 36

E = "a total of 4" = {(1, 3), (2, 2), (3, 1)} i.e. n(E) = 3
F = "a total of 9 or more = {(3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6)} i.e. n(F) = 10
G = "a total divisible by 5" = {(1, 4), (2, 3), (3, 2), (4, 1), (4, 6), (5, 5), (6, 4)} i.e. n(G) = 7

Now,

\[P\left( E \right) = \frac{3}{36} = \frac{1}{12}, \]
\[P\left( F \right) = \frac{10}{36} = \frac{5}{18} \text{ and } \]
\[P\left( G \right) = \frac{7}{36}\]
\[\text{ Also } , \]
\[E \cap F = \phi, E \cap G = \phi \text{ and }  F \cap G = \left\{ \left( 4, 6 \right), \left( 5, 5 \right), \left( 6, 4 \right) \right\} \text{ i . e . n} \left( F \cap G \right) = 3\]
\[\text{ Since } , P\left( F \right) \times P\left( G \right) = \frac{5}{18} \times \frac{7}{36} = \frac{35}{648} \neq \frac{3}{36}\]
\[i . e . P\left( F \right) \times P\left( G \right) \neq P\left( F \cap G \right)\]
\[\text{ So, no pair is independent } .\]

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
Chapter 31: Probability - Exercise 31.4 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 31 Probability
Exercise 31.4 | Q 24 | Page 55

RELATED QUESTIONS

A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?


A and B throw a pair of dice alternately, till one of them gets a total of 10 and wins the game. Find their respective probabilities of winning, if A starts first


If A and B are two events such that P (A) = \[\frac{1}{3},\] P (B) = \[\frac{1}{5}\] and P (A ∪ B) = \[\frac{11}{30}\] , find P (A/B) and P (B/A).

 
 
 

From a pack of 52 cards, two are drawn one by one without replacement. Find the probability that both of them are kings.


A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale otherwise it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.


If A and B are two events such that
\[ P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3} \text{ and }  P\left( A \cap B \right) = \frac{1}{4}, \text{ then find } P\left( A|B \right), P\left( B|A \right), P\left( \overline{ A }|B \right) \text{ and }  P\left( \overline{ A }|\overline{ B } \right) .\]


Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.


A die is rolled. If the outcome is an odd number, what is the probability that it is prime?

 

A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent? 

B = the card drawn is a spade, B = the card drawn in an ace.


Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (B/A) .


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.


A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that none of them will be selected?

 

 


A bag contains 7 white, 5 black and 4 red balls. Four balls are drawn without replacement. Find the probability that at least three balls are black.

 

A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?

 

The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.


A and B take turns in throwing two dice, the first to throw 9 being awarded the prize. Show that their chance of winning are in the ratio 9:8.


An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting
(i) 2 red balls
(ii) 2 blue balls
(iii) One red and one blue ball.


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?


A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins.


One bag contains 4 yellow and 5 red balls. Another bag contains 6 yellow and 3 red balls. A ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that ball drawn is yellow.


Three machines E1E2E3 in a certain factory produce 50%, 25% and 25%, respectively, of the total daily output of electric bulbs. It is known that 4% of the tubes produced one each of the machines Eand E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day's production, then calculate the probability that it is defective.


In a competition AB and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.


If A and B are independent events, then write expression for P(exactly one of AB occurs).


Three faces of an ordinary dice are yellow, two faces are red and one face is blue. The dice is rolled 3 times. The probability that yellow red and blue face appear in the first second and third throws respectively, is


A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floors is


If A and B are two events, then P (`overline A` ∩ B) =


A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then, the probability chosen to be white is


Two persons A and B take turns in throwing a pair of dice. The first person to throw 9 from both dice will be awarded the prize. If A throws first, then the probability that Bwins the game is


If A and B are two events such that A ≠ Φ, B = Φ, then 


Mark the correct alternative in the following question:

\[\text{ If the events A and B are independent, then }  P\left( A \cap B \right) \text{ is equal to } \]


Mark the correct alternative in the following question:A flash light has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, then the probability that both are dead is


Mark the correct alternative in the following question:
In a college 30% students fail in Physics, 25% fail in Mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in Physics if she failed in Mathematics is


Mark the correct alternative in the following question
Three persons, A, B and C fire a target in turn starting with A. Their probabilities of hitting the target are 0.4, 0.2 and 0.2, respectively. The probability of two hits is


Mark the correct alternative in the following question: 

\[\text{ If A and B are such that } P\left( A \cup B \right) = \frac{5}{9} \text{ and } P\left( \overline{A} \cup \overline{B} \right) = \frac{2}{3}, \text{ then } P\left( A \right) + P\left( B \right) = \]


Refer to Question 6. Calculate the probability that the defective tube was produced on machine E1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×