Advertisements
Advertisements
Question
Mark the correct alternative in the following question:
\[\text{ If the events A and B are independent, then } P\left( A \cap B \right) \text{ is equal to } \]
Options
\[P\left( A \right) + P\left( B \right)\]
\[ P\left( A \right) - P\left( B \right) \]
\[ P\left( A \right) P\left( B \right) \]
\[\frac{P\left( A \right)}{P\left( B \right)}\]
Solution
\[\text{ As, A and B are independent events } . \]
\[\text{ So }, P\left( A|B \right) = P\left( A \right) \text{ and} P\left( B|A \right) = P\left( B \right)\]
\[\text{ Now } , \]
\[P\left( A|B \right) = \frac{P\left( A \cap B \right)}{P\left( B \right)}\]
\[ \Rightarrow P\left( A \cap B \right) = P\left( B \right) P\left( A|B \right)\]
\[ \Rightarrow P\left( A \cap B \right) = P\left( B \right) P\left( A \right)\]
APPEARS IN
RELATED QUESTIONS
A and B throw a pair of dice alternately, till one of them gets a total of 10 and wins the game. Find their respective probabilities of winning, if A starts first
A bag contains 25 tickets, numbered from 1 to 25. A ticket is drawn and then another ticket is drawn without replacement. Find the probability that both tickets will show even numbers.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a king and the second is an ace.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a heart and second is red.
An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?
An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black?
Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?
If A and B are two events such that\[ P\left( A \right) = \frac{6}{11}, P\left( B \right) = \frac{5}{11} \text{ and } P\left( A \cup B \right) = \frac{7}{11}, \text{ then find } P\left( A \cap B \right), P\left( A|B \right) \text { and } P\left( B|A \right) . \]
If P (A) = \[\frac{6}{11},\] P (B) = \[\frac{5}{11}\] and P (A ∪ B) = \[\frac{7}{11},\] find
A coin is tossed three times. Find P (A/B) in each of the following:
A = At most two tails, B = At least one tail.
A pair of dice is thrown. Find the probability of getting 7 as the sum if it is known that the second die always exhibits a prime number.
A pair of dice is thrown. Find the probability of getting the sum 8 or more, if 4 appears on the first die.
Assume that each born child is equally likely to be a boy or a girl. If a family has two children, then what is the constitutional probability that both are girls? Given that
(i) the youngest is a girl (b) at least one is a girl.
Prove that in throwing a pair of dice, the occurrence of the number 4 on the first die is independent of the occurrence of 5 on the second die.
A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
A = the card drawn is black, B = the card drawn is a king.
Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`
If A and B are two independent events such that P (A ∪ B) = 0.60 and P (A) = 0.2, find P(B).
The odds against a certain event are 5 to 2 and the odds in favour of another event, independent to the former are 6 to 5. Find the probability that (i) at least one of the events will occur, and (ii) none of the events will occur.
A speaks truth in 75% and B in 80% of the cases. In what percentage of cases are they likely to contradict each other in narrating the same incident?
A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.
A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?
Three cards are drawn with replacement from a well shuffled pack of 52 cards. Find the probability that the cards are a king, a queen and a jack.
A, B and C in order toss a coin. The one to throw a head wins. What are their respective chances of winning assuming that the game may continue indefinitely?
A bag contains 3 white and 2 black balls and another bag contains 2 white and 4 black balls. One bag is chosen at random. From the selected bag, one ball is drawn. Find the probability that the ball drawn is white.
The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.
A four digit number is formed using the digits 1, 2, 3, 5 with no repetitions. Write the probability that the number is divisible by 5.
When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.
If A and B are two events write the expression for the probability of occurrence of exactly one of two events.
In a competition A, B and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.
The probabilities of a student getting I, II and III division in an examination are \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is
Mark the correct alternative in the following question:
\[ \text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( \overline{A \cup B }\right) = \frac{4}{5}, \text{ then } P\left( \overline{ A } \cup B \right) + P\left( A \cup B \right) = \]
Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability that exactly two of the three balls were red, the first ball being red, is
Mark the correct alternative in the following question:
If two events are independent, then
Mark the correct alternative in the following question:
Two dice are thrown. If it is known that the sum of the numbers on the dice was less than 6, then the probability of getting a sum 3, is
If two events A and B are such that P (A)
\[\left( \overline{ A } \right)\] = 0.3, P (B) = 0.4 and P (A ∩ B) = 0.5, find P \[\left( B/\overline{ A }\cap \overline{ B } \right)\].