English

If P (A) = 6 11 , P (B) = 5 11 and P (A ∪ B) = 7 11 , Find (I) P (A ∩ B) (Ii) P (A/B) (Iii) P (B/A) - Mathematics

Advertisements
Advertisements

Question

If P (A) = \[\frac{6}{11},\]  P (B) = \[\frac{5}{11}\]  and P (A ∪ B) = \[\frac{7}{11},\]  find

(i) P (A ∩ B)
(ii) P (A/B)
(iii) P (B/A)
Sum

Solution

Given: 

\[P\left( A \right) = \frac{6}{11}\]

\[P\left( B \right) = \frac{5}{11} \]

\[P\left( A \cup B \right) = \frac{7}{11}\]

\[\text { (i) P\left( A \cup B \right) = P\left( A \right) + P\left( B \right) - P\left( A \cap B \right)\]

\[ \Rightarrow \frac{7}{11} = \frac{6}{11} + \frac{5}{11} - P\left( A \cap B \right)\]

\[ \Rightarrow P\left( A \cap B \right) = \frac{6}{11} + \frac{5}{11} - \frac{7}{11} = \frac{4}{11}\]

\[\text{(ii) } P\left( A/B \right) = \frac{P\left( A \cap B \right)}{P\left( B \right)}\]

\[ = \frac{\frac{4}{11}}{\frac{5}{11}}\]

\[ = \frac{4}{5}\]

\[\text {(iii) } P\left( B/A \right) = \frac{P\left( A \cap B \right)}{P\left( A \right)}\]

\[ = \frac{\frac{4}{11}}{\frac{6}{11}}\]

\[ = \frac{4}{6}\]

\[ = \frac{2}{3}\]

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
Chapter 31: Probability - Exercise 31.3 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 31 Probability
Exercise 31.3 | Q 7 | Page 34

RELATED QUESTIONS

A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?


A and B throw a pair of dice alternately, till one of them gets a total of 10 and wins the game. Find their respective probabilities of winning, if A starts first


Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls. Two balls are transferred at random from bag A to bag B and then a ball is drawn from bag B at random. If the ball drawn from bag B is found to be red find the probability that two red balls were transferred from A to B.


Assume that each child born is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girl, (ii) at least one is a girl?


From a pack of 52 cards, two are drawn one by one without replacement. Find the probability that both of them are kings.


From a deck of cards, three cards are drawn on by one without replacement. Find the probability that each time it is a card of spade.


Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?


If P (A) = 0.4, P (B) = 0.8, P (B/A) = 0.6. Find P (A/B) and P (A ∪ B).

 

Two coins are tossed once. Find P (A/B) in each of the following:

A = No tail appears, B = No head appears.


A die is thrown three times. Find P (A/B) and P (B/A), if
A = 4 appears on the third toss, B = 6 and 5 appear respectively on first two tosses.


A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?


The probability that a student selected at random from a class will pass in Mathematics is `4/5`, and the probability that he/she passes in Mathematics and Computer Science is `1/2`.  What is the probability that he/she will pass in Computer Science if it is known that he/she has passed in Mathematics?


The probability that a certain person will buy a shirt is 0.2, the probability that he will buy a trouser is 0.3, and the probability that he will buy a shirt given that he buys a trouser is 0.4. Find the probability that he will buy both a shirt and a trouser. Find also the probability that he will buy a trouser given that he buys a shirt.


Given two independent events A and B such that P (A) = 0.3 and P (B) = `0.6. Find P (A ∩ overlineB ) `.


The probability that A hits a target is 1/3 and the probability that B hits it, is 2/5, What is the probability that the target will be hit, if each one of A and B shoots at the target?


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 blue balls. 


Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 p2 .


Two cards are drawn successively without replacement from a well-shuffled deck of 52 cards. Find the probability of exactly one ace.


A bag contains 4 red and 5 black balls, a second bag contains 3 red and 7 black balls. One ball is drawn at random from each bag, find the probability that the (i) balls are of different colours (ii) balls are of the same colour.


A can hit a target 3 times in 6 shots, B : 2 times in 6 shots and C : 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit?

 

Three persons ABC throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.


A card is drawn from a well-shuffled deck of 52 cards. The outcome is noted, the card is replaced and the deck reshuffled. Another card is then drawn from the deck.
(i) What is the probability that both the cards are of the same suit?
(ii) What is the probability that the first card is an ace and the second card is a red queen?


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?


A factory has two machines A and B. Past records show that the machine A produced 60% of the items of output and machine B produced 40% of the items. Further 2% of the items produced by machine A were defective and 1% produced by machine B were defective. If an item is drawn at random, what is the probability that it is defective?

 

Three machines E1E2E3 in a certain factory produce 50%, 25% and 25%, respectively, of the total daily output of electric bulbs. It is known that 4% of the tubes produced one each of the machines Eand E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day's production, then calculate the probability that it is defective.


If A and B are two independent events such that P (A) = 0.3 and P (A ∪ \[B\]) = 0.8. Find P (B).

 
 

If ABC are mutually exclusive and exhaustive events associated to a random experiment, then write the value of P (A) + P (B) + P (C).


If A and B are independent events, then write expression for P(exactly one of AB occurs).


If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of Aand B occurs) =  \[\frac{5}{9}\], then find the value of p.


The probabilities of a student getting I, II and III division in an examination are  \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is

 

A person writes 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =


If P (A ∪ B) = 0.8 and P (A ∩ B) = 0.3, then P \[\left( A \right)\] \[\left( A \right)\] + P \[\left( B \right)\] =


Mark the correct alternative in the following question:

\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]


Mark the correct alternative in the following question:

\[\text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( A \cup B \right) = \frac{4}{5}, \text{ then }  P\left( B|\overline{ A } \right) = \]


Mark the correct alternative in the following question:
In a college 30% students fail in Physics, 25% fail in Mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in Physics if she failed in Mathematics is


Mark the correct alternative in the following question:

\[\text{ Let A and B be two events such that P } \left( A \right) = 0 . 6, P\left( B \right) = 0 . 2, P\left( A|B \right) = 0 . 5 . \text{ Then } P\left( \overline{A}|\overline{B} \right) \text{ equals } \]

 


Mother, father and son line up at random for a family photo. If A and B are two events given by
A = Son on one end, B = Father in the middle, find P(B / A).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×