Advertisements
Advertisements
Question
Mother, father and son line up at random for a family photo. If A and B are two events given by
A = Son on one end, B = Father in the middle, find P(B / A).
Solution
If the mother (M), father (F), and son (S) line up for the family picture, then the sample space will be
A → Son on one end.
B → Father in the middle
Son (s) , Father (F), Mother (M)
Total possible cases.
S = {MFS, MSF, FMS, FSM, SMF, SFM}
A= {MFS, FMS, SMF, SFM}
B = {MFS, SFM}
∴ A ∩ B = {MFS, SFM}
`P(A) = 4/6 = 2/3 P (A cap B ) = 2/6 = 1/3`
` P(B) = 2/6 = 1/3`
`P(B/A) = (P(A cap B))/(P(A)) = (1/3)/(2/3) = 1/2`
`P(B/A) = 1/2 `
RELATED QUESTIONS
A coin is tossed three times, if head occurs on first two tosses, find the probability of getting head on third toss.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a heart and second is red.
Two coins are tossed once. Find P (A/B) in each of the following:
A = No tail appears, B = No head appears.
A pair of dice is thrown. Find the probability of getting 7 as the sum, if it is known that the second die always exhibits an odd number.
Two numbers are selected at random from integers 1 through 9. If the sum is even, find the probability that both the numbers are odd.
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the number of heads is odd, B = the number of tails is odd.
If A and B be two events such that P (A) = 1/4, P (B) = 1/3 and P (A ∪ B) = 1/2, show that A and B are independent events.
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∪ B).
A bag contains 3 red and 2 black balls. One ball is drawn from it at random. Its colour is noted and then it is put back in the bag. A second draw is made and the same procedure is repeated. Find the probability of drawing (i) two red balls, (ii) two black balls, (iii) first red and second black ball.
An anti-aircraft gun can take a maximum of 4 shots at an enemy plane moving away from it. The probabilities of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1 respectively. What is the probability that the gun hits the plane?
Two dice are thrown together and the total score is noted. The event E, F and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.
Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?
A bag contains 7 white, 5 black and 4 red balls. Four balls are drawn without replacement. Find the probability that at least three balls are black.
Three persons A, B, C throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.
The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?
If A and B are two events write the expression for the probability of occurrence of exactly one of two events.
If one ball is drawn at random from each of three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, then the probability that 2 white and 1 black balls will be drawn is
The probabilities of a student getting I, II and III division in an examination are \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.
A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is
If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =
If P (A ∪ B) = 0.8 and P (A ∩ B) = 0.3, then P \[\left( A \right)\] \[\left( A \right)\] + P \[\left( B \right)\] =
A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then, the probability chosen to be white is
Choose the correct alternative in the following question:
Associated to a random experiment two events A and B are such that
Choose the correct alternative in the following question:
\[\text{ If } P\left( A \right) = \frac{2}{5}, P\left( B \right) = \frac{3}{10} \text{ and } P\left( A \cap B \right) = \frac{1}{5}, \text{ then } , P\left( \overline { A }|\overline{ B } \right) P\left( \overline{ B }|\overline{ A } \right) \text{ is equal to } \]
Mark the correct alternative in the following question:
\[\text{ Let A and B are two events such that } P\left( A \right) = \frac{3}{8}, P\left( B \right) = \frac{5}{8} \text{ and } P\left( A \cup B \right) = \frac{3}{4} . \text{ Then } P\left( A|B \right) \times P\left( A \cap B \right) \text{ is equals to } \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events with } P\left( A \right) = \frac{3}{5} \text{ and } P\left( B \right) = \frac{4}{9}, \text{ then } P\left( \overline{A} \cap B \right) \text{ equals } \]
If two events A and B are such that P (A)
\[\left( \overline{ A } \right)\] = 0.3, P (B) = 0.4 and P (A ∩ B) = 0.5, find P \[\left( B/\overline{ A }\cap \overline{ B } \right)\].