English

The Contents of Three Bags I, Ii and Iii Are as Follows: Bag I : 1 White, 2 Black and 3 Red Balls, Bag Ii : 2 White, 1 Black and 1 Red Ball; Bag Iii : 4 White, 5 Black and 3 Red Balls. - Mathematics

Advertisements
Advertisements

Question

The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?

Solution

A white ball and a red ball can be drawn in three mutually exclusive ways:
(I) Selecting bag I and then drawing a white and a red ball from it
(II) Selecting bag II and then drawing a white and a red ball from it
(II) Selecting bag III and then drawing a white and a red ball from it
Let E1E2 and A be the events as defined below:
E1 = Selecting bag I
E2 = Selecting bag II
E3 = Selecting bag II
A = Drawing a white and a red ball
It is given that one of the bags is selected randomly.

\[\therefore P\left( E_1 \right) = \frac{1}{3}\]

\[ P\left( E_2 \right) = \frac{1}{3}\]

\[ P\left( E_3 \right) = \frac{1}{3}\]

\[\text{ Now } , \]

\[P\left( A/ E_1 \right) = \frac{{}^1 C_1 \times^3 C_1}{{}^6 C_2} = \frac{3}{15}\]

\[P\left( A/ E_2 \right) = \frac{{}^2 C_1 \times^1 C_1}{{}^4 C_2} = \frac{2}{6}\]

\[P\left( A/ E_3 \right) = \frac{{}^4 C_1 \times^3 C_1}{{}^{12} C_2} = \frac{12}{66}\]

\[\text{ Using the law of total probability, we get} \]

\[\text{ Required probability}  = P\left( A \right) = P\left( E_1 \right)P\left( A/ E_1 \right) + P\left( E_2 \right)P\left( A/ E_2 \right) + P\left( E_3 \right)P\left( A/ E_3 \right)\]

\[ = \frac{1}{3} \times \frac{3}{15} + \frac{1}{3} \times \frac{2}{6} + \frac{1}{3} \times \frac{12}{66}\]

\[ = \frac{1}{15} + \frac{1}{9} + \frac{2}{33}\]

\[ = \frac{33 + 55 + 30}{495} = \frac{118}{495}\]

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
Chapter 31: Probability - Exercise 31.6 [Page 81]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 31 Probability
Exercise 31.6 | Q 5 | Page 81

RELATED QUESTIONS

In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from this set and tossed five times. If all the five times, the result was heads, find the probability that the selected coin had heads on both the sides.


How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%?


An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.


A coin is tossed three times, if head occurs on first two tosses, find the probability of getting head on third toss.


If A and B are two events such that P (A) = \[\frac{1}{3},\] P (B) = \[\frac{1}{5}\] and P (A ∪ B) = \[\frac{11}{30}\] , find P (A/B) and P (B/A).

 
 
 

A bag contains 20 tickets, numbered from 1 to 20. Two tickets are drawn without replacement. What is the probability that the first ticket has an even number and the second an odd number.


Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?


A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale otherwise it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.


A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).


A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the first throw results in head, B = the last throw results in tail.


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∩ B).


If A and B are two independent events such that P (`bar A`  ∩ B) = 2/15 and P (A ∩`bar B` ) = 1/6, then find P (B).

 
 

A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.


Three cards are drawn with replacement from a well shuffled pack of cards. Find the probability that the cards drawn are king, queen and jack.


The odds against a certain event are 5 to 2 and the odds in favour of another event, independent to the former are 6 to 5. Find the probability that (i) at least one of the events will occur, and (ii) none of the events will occur.


A die is thrown thrice. Find the probability of getting an odd number at least once.

 

An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.


Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2  


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.


A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that none of them will be selected?

 

 


Three cards are drawn with replacement from a well shuffled pack of 52 cards. Find the probability that the cards are a king, a queen and a jack.

 

In a hockey match, both teams A and B scored same number of goals upto the end of the game, so to decide the winner, the refree asked both the captains to throw a die alternately and decide that the team, whose captain gets a first six, will be declared the winner. If the captain of team A was asked to start, find their respective probabilities of winning the match and state whether the decision of the refree was fair or not.


A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins.


Three digit numbers are formed with the digits 0, 2, 4, 6 and 8. Write the probability of forming a three digit number with the same digits.


6 boys and 6 girls sit in a row at random. Find the probability that all the girls sit together.


If A and B are two independent events such that P (A) = 0.3 and P (A ∪ \[B\]) = 0.8. Find P (B).

 
 

A person writes 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is


If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =


Mark the correct alternative in the following question:

\[\text{ If the events A and B are independent, then }  P\left( A \cap B \right) \text{ is equal to } \]


Mark the correct alternative in the following question: 

\[\text{ If A and B are two independent events such that}  P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]

 

 


Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is


Mark the correct alternative in the following question:
Two dice are thrown. If it is known that the sum of the numbers on the dice was less than 6, then the probability of getting a sum 3, is


Mark the correct alternative in the following question:

\[\text{ Let A and B be two events such that P } \left( A \right) = 0 . 6, P\left( B \right) = 0 . 2, P\left( A|B \right) = 0 . 5 . \text{ Then } P\left( \overline{A}|\overline{B} \right) \text{ equals } \]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×