English

Three Cards Are Drawn with Replacement from a Well Shuffled Pack of Cards. Find the Probability that the Cards Drawn Are King, Queen and Jack. - Mathematics

Advertisements
Advertisements

Question

Three cards are drawn with replacement from a well shuffled pack of cards. Find the probability that the cards drawn are king, queen and jack.

Solution

\[P\left( \text{ king }  \right) = \frac{4}{52}\]
\[P\left( \text{ queen }  \right) = \frac{4}{52}\]
\[P\left( \text{ jack } \right) = \frac{4}{52}\]
\[\text{ These cards can be drawn in }{}^3 P_3 \text{ ways } . \]
\[P\left( \text{ king, queen and jack }  \right) = \frac{4}{52} \times \frac{4}{52} \times \frac{4}{52} \times^3 P_3 \]
\[ = \frac{3!}{2197}\]
\[ = \frac{6}{2197}\]

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
Chapter 31: Probability - Exercise 31.4 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 31 Probability
Exercise 31.4 | Q 15 | Page 54

RELATED QUESTIONS

A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.


If A and B are two events such that P (A) = \[\frac{1}{3},\] P (B) = \[\frac{1}{5}\] and P (A ∪ B) = \[\frac{11}{30}\] , find P (A/B) and P (B/A).

 
 
 

Two cards are drawn without replacement from a pack of 52 cards. Find the probability that both are kings .


A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.


If P (A) = 0.4, P (B) = 0.8, P (B/A) = 0.6. Find P (A/B) and P (A ∪ B).

 

If A and B are two events such that \[ P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13}, \text{ then find } P\left( \overline{ A }|B \right) . \]


A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?


The probability that a certain person will buy a shirt is 0.2, the probability that he will buy a trouser is 0.3, and the probability that he will buy a shirt given that he buys a trouser is 0.4. Find the probability that he will buy both a shirt and a trouser. Find also the probability that he will buy a trouser given that he buys a shirt.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. B and C .


Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`


A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.


A die is tossed twice. Find the probability of getting a number greater than 3 on each toss.

 

The probability that A hits a target is 1/3 and the probability that B hits it, is 2/5, What is the probability that the target will be hit, if each one of A and B shoots at the target?


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that (i) both balls are red, (ii) first ball is black and second is red, (iii) one of them is black and other is red.

 

Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that first ball is black and second is red. 


A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.

 

A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that both of them will be selected ?


A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?

 


A bag contains 4 red and 5 black balls, a second bag contains 3 red and 7 black balls. One ball is drawn at random from each bag, find the probability that the (i) balls are of different colours (ii) balls are of the same colour.


A and B take turns in throwing two dice, the first to throw 9 being awarded the prize. Show that their chance of winning are in the ratio 9:8.


A four digit number is formed using the digits 1, 2, 3, 5 with no repetitions. Write the probability that the number is divisible by 5.


When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.

 

Three digit numbers are formed with the digits 0, 2, 4, 6 and 8. Write the probability of forming a three digit number with the same digits.


A ordinary cube has four plane faces, one face marked 2 and another face marked 3, find the probability of getting a total of 7 in 5 throws.


An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.


In a competition AB and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.


A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is


The probabilities of a student getting I, II and III division in an examination are  \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is

 

The probability that a leap year will have 53 Fridays or 53 Saturdays is


Choose the correct alternative in the following question:
If A and B are two events associated to a random experiment such that \[P\left( A \cap B \right) = \frac{7}{10} \text{ and } P\left( B \right) = \frac{17}{20}\] , then P(A|B) = 


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3}, P\left( A|B \right) = \frac{1}{4}, \text{ then } P\left( A \cap B \right) \text{ equals} \]


Mark the correct alternative in the following question:

\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]


Mark the correct alternative in the following question: 

\[\text{ If A and B are two independent events such that}  P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]

 

 


Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is


Mark the correct alternative in the following question: 

\[\text{ If A and B are such that } P\left( A \cup B \right) = \frac{5}{9} \text{ and } P\left( \overline{A} \cup \overline{B} \right) = \frac{2}{3}, \text{ then } P\left( A \right) + P\left( B \right) = \]


Mother, father and son line up at random for a family photo. If A and B are two events given by
A = Son on one end, B = Father in the middle, find P(B / A).


A coin is tossed 5 times. Find the probability of getting (i) at least 4 heads, and (ii) at most 4  heads. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×