English

A and B Take Turns in Throwing Two Dice, the First to Throw 9 Being Awarded the Prize. Show that Their Chance of Winning Are in the Ratio 9:8. - Mathematics

Advertisements
Advertisements

Question

A and B take turns in throwing two dice, the first to throw 9 being awarded the prize. Show that their chance of winning are in the ratio 9:8.

Sum

Solution

\[\text{ Total number of events = 36 } \]
\[P\left( \text{ getting } 9 \right) = \frac{4}{36} = \frac{1}{9}\]
\[P\left( \text{ A winning }  \right) = P\left( \text{ getting 9 in first throw }  \right) + P\left( \text{ getting 9 in third throw } \right) + . . . \]
\[ = \frac{1}{9} + \left( 1 - \frac{1}{9} \right)\left( 1 - \frac{1}{9} \right) \times \frac{1}{9} + . . . \]
\[ = \frac{1}{9}\left[ 1 + \frac{64}{81} + \left( \frac{64}{81} \right)^2 + . . . \right]\]
\[ = \frac{1}{9}\left[ \frac{1}{1 - \frac{64}{81}} \right] \left[ {1+a+a}^2 {+a}^3 + . . . =\frac{1}{1 - a} \right]\]
\[ = \frac{1}{9} \times \frac{81}{17}\]
\[ = \frac{9}{17}\]
\[P\left( \text{ B  winning } \right) = P\left( \text{ getting 9 in second throw } \right) + P\left( \text{ getting 9 in fourth throw }  \right) + . . . \]
\[ = \left( 1 - \frac{1}{9} \right)\frac{1}{9} + \left( 1 - \frac{1}{9} \right)\left( 1 - \frac{1}{9} \right)\left( 1 - \frac{1}{9} \right) \times \frac{1}{9} + . . . \]
\[ = \frac{8}{81}\left[ 1 + \frac{64}{81} + \left( \frac{64}{81} \right)^2 + . . . \right]\]
\[ = \frac{8}{81}\left[ \frac{1}{1 - \frac{64}{81}} \right] \left[ {1+a+a}^2 {+a}^3 + . . . =\frac{1}{1 - a} \right]\]
\[ = \frac{8}{81} \times \frac{81}{17}\]
\[ = \frac{8}{17}\]
\[ \therefore \text{ Winning ratio of A to B } = \frac{\frac{9}{17}}{\frac{8}{17}} = \frac{9}{8}\]

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
Chapter 31: Probability - Exercise 31.5 [Page 70]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 31 Probability
Exercise 31.5 | Q 25 | Page 70

RELATED QUESTIONS

A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?


How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%?


In a shop X, 30 tins of pure ghee and 40 tins of adulterated ghee which look alike, are kept for sale while in shop Y, similar 50 tins of pure ghee and 60 tins of adulterated ghee are there. One tin of ghee is purchased from one of the randomly selected shops and is found to be adulterated. Find the probability that it is purchased from shop Y. What measures should be taken to stop adulteration?


A bag contains 4 white, 7 black and 5 red balls. Three balls are drawn one after the other without replacement. Find the probability that the balls drawn are white, black and red respectively.


If A and B are events such that P (A) = 0.6, P (B) = 0.3 and P (A ∩ B) = 0.2, find P (A/B) and P (B/A).


If A and B are two events such that\[ P\left( A \right) = \frac{6}{11}, P\left( B \right) = \frac{5}{11} \text{ and } P\left( A \cup B \right) = \frac{7}{11}, \text{ then find } P\left( A \cap B \right), P\left( A|B \right) \text { and } P\left( B|A \right) . \]


A pair of dice is thrown. Find the probability of getting 7 as the sum, if it is known that the second die always exhibits an odd number.


The probability that a student selected at random from a class will pass in Mathematics is `4/5`, and the probability that he/she passes in Mathematics and Computer Science is `1/2`.  What is the probability that he/she will pass in Computer Science if it is known that he/she has passed in Mathematics?


Prove that in throwing a pair of dice, the occurrence of the number 4 on the first die is independent of the occurrence of 5 on the second die.


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?

A = the card drawn is black, B = the card drawn is a king.


If A and B are two independent events such that P (`bar A`  ∩ B) = 2/15 and P (A ∩`bar B` ) = 1/6, then find P (B).

 
 

A die is tossed twice. Find the probability of getting a number greater than 3 on each toss.

 

An article manufactured by a company consists of two parts X and Y. In the process of manufacture of the part X, 9 out of 100 parts may be defective. Similarly, 5 out of 100 are likely to be defective in the manufacture of part Y. Calculate the probability that the assembled product will not be defective.


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.


Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2  


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.


A speaks truth in 75% and B in 80% of the cases. In what percentage of cases are they likely to contradict each other in narrating the same incident?

 

A and B toss a coin alternately till one of them gets a head and wins the game. If A starts the game, find the probability that B will win the game.


Tickets are numbered from 1 to 10. Two tickets are drawn one after the other at random. Find the probability that the number on one of the tickets is a multiple of 5 and on the other a multiple of 4.

 

A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that both of them will be selected ?


Three cards are drawn with replacement from a well shuffled pack of 52 cards. Find the probability that the cards are a king, a queen and a jack.

 

A bag contains 4 red and 5 black balls, a second bag contains 3 red and 7 black balls. One ball is drawn at random from each bag, find the probability that the (i) balls are of different colours (ii) balls are of the same colour.


An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting
(i) 2 red balls
(ii) 2 blue balls
(iii) One red and one blue ball.


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?


A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins.


A factory has two machines A and B. Past records show that the machine A produced 60% of the items of output and machine B produced 40% of the items. Further 2% of the items produced by machine A were defective and 1% produced by machine B were defective. If an item is drawn at random, what is the probability that it is defective?

 

An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.


In a competition AB and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.


If A and B are independent events, then write expression for P(exactly one of AB occurs).


If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =


If A and B are two events, then P (`overline A` ∩ B) =


A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then, the probability chosen to be white is


Mark the correct alternative in the following question:

If A and B are two events such that P(A) = \[\frac{4}{5}\] , and \[P\left( A \cap B \right) = \frac{7}{10}\] , then P(B|A) =


Choose the correct alternative in the following question:

\[\text{ If } P\left( A \right) = \frac{2}{5}, P\left( B \right) = \frac{3}{10} \text{ and }  P\left( A \cap B \right) = \frac{1}{5}, \text{ then } , P\left( \overline { A }|\overline{ B } \right) P\left( \overline{ B }|\overline{ A } \right) \text{ is equal to } \]


Mark the correct alternative in the following question:

\[ \text{ If }  P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and }  P\left( \overline{A \cup B }\right) = \frac{4}{5}, \text{ then }  P\left( \overline{ A } \cup B \right) + P\left( A \cup B \right) = \]


Mark the correct alternative in the following question:

\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]


Mark the correct alternative in the following question:

\[\text{ If the events A and B are independent, then }  P\left( A \cap B \right) \text{ is equal to } \]


Mark the correct alternative in the following question:

\[\text{ Let A and B be two events such that P } \left( A \right) = 0 . 6, P\left( B \right) = 0 . 2, P\left( A|B \right) = 0 . 5 . \text{ Then } P\left( \overline{A}|\overline{B} \right) \text{ equals } \]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×