Advertisements
Advertisements
प्रश्न
A and B take turns in throwing two dice, the first to throw 9 being awarded the prize. Show that their chance of winning are in the ratio 9:8.
उत्तर
\[\text{ Total number of events = 36 } \]
\[P\left( \text{ getting } 9 \right) = \frac{4}{36} = \frac{1}{9}\]
\[P\left( \text{ A winning } \right) = P\left( \text{ getting 9 in first throw } \right) + P\left( \text{ getting 9 in third throw } \right) + . . . \]
\[ = \frac{1}{9} + \left( 1 - \frac{1}{9} \right)\left( 1 - \frac{1}{9} \right) \times \frac{1}{9} + . . . \]
\[ = \frac{1}{9}\left[ 1 + \frac{64}{81} + \left( \frac{64}{81} \right)^2 + . . . \right]\]
\[ = \frac{1}{9}\left[ \frac{1}{1 - \frac{64}{81}} \right] \left[ {1+a+a}^2 {+a}^3 + . . . =\frac{1}{1 - a} \right]\]
\[ = \frac{1}{9} \times \frac{81}{17}\]
\[ = \frac{9}{17}\]
\[P\left( \text{ B winning } \right) = P\left( \text{ getting 9 in second throw } \right) + P\left( \text{ getting 9 in fourth throw } \right) + . . . \]
\[ = \left( 1 - \frac{1}{9} \right)\frac{1}{9} + \left( 1 - \frac{1}{9} \right)\left( 1 - \frac{1}{9} \right)\left( 1 - \frac{1}{9} \right) \times \frac{1}{9} + . . . \]
\[ = \frac{8}{81}\left[ 1 + \frac{64}{81} + \left( \frac{64}{81} \right)^2 + . . . \right]\]
\[ = \frac{8}{81}\left[ \frac{1}{1 - \frac{64}{81}} \right] \left[ {1+a+a}^2 {+a}^3 + . . . =\frac{1}{1 - a} \right]\]
\[ = \frac{8}{81} \times \frac{81}{17}\]
\[ = \frac{8}{17}\]
\[ \therefore \text{ Winning ratio of A to B } = \frac{\frac{9}{17}}{\frac{8}{17}} = \frac{9}{8}\]
APPEARS IN
संबंधित प्रश्न
A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B, If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.
A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.
An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black?
If A and B are two events such that\[ P\left( A \right) = \frac{6}{11}, P\left( B \right) = \frac{5}{11} \text{ and } P\left( A \cup B \right) = \frac{7}{11}, \text{ then find } P\left( A \cap B \right), P\left( A|B \right) \text { and } P\left( B|A \right) . \]
If A and B are two events such that
\[ P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3} \text{ and } P\left( A \cap B \right) = \frac{1}{4}, \text{ then find } P\left( A|B \right), P\left( B|A \right), P\left( \overline{ A }|B \right) \text{ and } P\left( \overline{ A }|\overline{ B } \right) .\]
Two coins are tossed once. Find P (A/B) in each of the following:
A = No tail appears, B = No head appears.
A pair of dice is thrown. Find the probability of getting 7 as the sum if it is known that the second die always exhibits a prime number.
A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A
A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.
An article manufactured by a company consists of two parts X and Y. In the process of manufacture of the part X, 9 out of 100 parts may be defective. Similarly, 5 out of 100 are likely to be defective in the manufacture of part Y. Calculate the probability that the assembled product will not be defective.
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.
The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that first ball is black and second is red.
A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.
A and B take turns in throwing two dice, the first to throw 10 being awarded the prize, show that if A has the first throw, their chance of winning are in the ratio 12 : 11.
An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting
(i) 2 red balls
(ii) 2 blue balls
(iii) One red and one blue ball.
In a hockey match, both teams A and B scored same number of goals upto the end of the game, so to decide the winner, the refree asked both the captains to throw a die alternately and decide that the team, whose captain gets a first six, will be declared the winner. If the captain of team A was asked to start, find their respective probabilities of winning the match and state whether the decision of the refree was fair or not.
The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?
An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the sum of the numbers obtained is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered 2, 3, 4, ..., 12 is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8?
A factory has two machines A and B. Past records show that the machine A produced 60% of the items of output and machine B produced 40% of the items. Further 2% of the items produced by machine A were defective and 1% produced by machine B were defective. If an item is drawn at random, what is the probability that it is defective?
A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.
An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls. Two are drawn from first urn and put into the second urn and then a ball is drawn from the latter. Find the probability that its is a white ball.
An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.
In a competition A, B and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.
If A and B are independent events, then write expression for P(exactly one of A, B occurs).
If one ball is drawn at random from each of three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, then the probability that 2 white and 1 black balls will be drawn is
The probability that a leap year will have 53 Fridays or 53 Saturdays is
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
If A and B are two events, then P (`overline A` ∩ B) =
Mark the correct alternative in the following question:
If A and B are two events such that P(A) = \[\frac{4}{5}\] , and \[P\left( A \cap B \right) = \frac{7}{10}\] , then P(B|A) =
Choose the correct alternative in the following question:
If A and B are two events associated to a random experiment such that \[P\left( A \cap B \right) = \frac{7}{10} \text{ and } P\left( B \right) = \frac{17}{20}\] , then P(A|B) =
Choose the correct alternative in the following question: \[\text{ Let } P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13} . \text{ Then } , P\left( \overline{ A }|B \right) = \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events with } P\left( A \right) = \frac{3}{5} \text{ and } P\left( B \right) = \frac{4}{9}, \text{ then } P\left( \overline{A} \cap B \right) \text{ equals } \]
Mark the correct alternative in the following question:
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is
Refer to Question 6. Calculate the probability that the defective tube was produced on machine E1.