मराठी

A-b-c-order-toss-coin-one-throw-head-wins-what-are-their-respective-chances-winning-assuming-that-game-may-continue-indefinitely - Mathematics

Advertisements
Advertisements

प्रश्न

A, B and C in order toss a coin. The one to throw a head wins. What are their respective chances of winning assuming that the game may continue indefinitely?

बेरीज

उत्तर

\[P\left( \text { A winning }  \right) = P\left( \text{ head in first toss } \right) + P\left( \text{ head in fourth toss }\right) + . . . \]

\[ = \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + . . . \]

\[ = \frac{1}{2}\left[ 1 + \left( \frac{1}{2} \right)^3 + \left( \frac{1}{2} \right)^6 + . . . \right]\]

\[ = \frac{1}{2}\left[ \frac{1}{1 - \frac{1}{8}} \right] \left[ {1+a+a}^2 {+a}^3 + . . . =\frac{1}{1 - a} \right]\]

\[ = \frac{1}{2} \times \frac{8}{7}\]

\[ = \frac{4}{7}\]

\[P\left( \text{ B winning } \right) = P\left( \text{ head in second toss }  \right) + P\left( \text{ head in fifth toss } \right) + . . . \]

\[ = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + . . . \]

\[ = \frac{1}{4}\left[ 1 + \left( \frac{1}{2} \right)^3 + \left( \frac{1}{2} \right)^6 + . . . \right]\]

\[ = \frac{1}{4}\left[ \frac{1}{1 - \frac{1}{8}} \right] \left[ {1+a+a}^2 {+a}^3 + . . . =\frac{1}{1 - a} \right]\]

\[ = \frac{1}{4} \times \frac{8}{7}\]

\[ = \frac{2}{7}\]

\[P\left( C \text{ winning } \right) = P\left( \text{ head in third toss } \right) + P\left( \text{ head in sixth toss } \right) + . . . \]

\[ = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + . . . \]

\[ = \frac{1}{8}\left[ 1 + \left( \frac{1}{2} \right)^3 + \left( \frac{1}{2} \right)^6 + . . . \right]\]

\[ = \frac{1}{8}\left[ \frac{1}{1 - \frac{1}{8}} \right] \left[ {1+a+a}^2 {+a}^3 + . . . =\frac{1}{1 - a} \right]\]

\[ = \frac{1}{8} \times \frac{8}{7}\]

\[ = \frac{1}{7}\]

shaalaa.com
Probability Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 31: Probability - Exercise 31.5 [पृष्ठ ७०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 31 Probability
Exercise 31.5 | Q 26 | पृष्ठ ७०

संबंधित प्रश्‍न

A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?


Assume that each child born is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girl, (ii) at least one is a girl?


Compute P (A/B), if P (B) = 0.5 and P (A ∩ B) = 0.32

 

A bag contains 20 tickets, numbered from 1 to 20. Two tickets are drawn without replacement. What is the probability that the first ticket has an even number and the second an odd number.


A bag contains 4 white, 7 black and 5 red balls. Three balls are drawn one after the other without replacement. Find the probability that the balls drawn are white, black and red respectively.


If A and B are two events such that 2 P (A) = P (B) = \[\frac{5}{13}\]  and P (A/B) =  \[\frac{2}{5},\]  find P (A ∪ B).


If P (A) = \[\frac{6}{11},\]  P (B) = \[\frac{5}{11}\]  and P (A ∪ B) = \[\frac{7}{11},\]  find

(i) P (A ∩ B)
(ii) P (A/B)
(iii) P (B/A)

Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.


A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?


The probability that a certain person will buy a shirt is 0.2, the probability that he will buy a trouser is 0.3, and the probability that he will buy a shirt given that he buys a trouser is 0.4. Find the probability that he will buy both a shirt and a trouser. Find also the probability that he will buy a trouser given that he buys a shirt.


A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?

A = the number of heads is odd, B = the number of tails is odd.


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent? 

B = the card drawn is a spade, B = the card drawn in an ace.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.


Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find \[P \overline A \cup \overline B \] .


A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.


Three cards are drawn with replacement from a well shuffled pack of cards. Find the probability that the cards drawn are king, queen and jack.


The odds against a certain event are 5 to 2 and the odds in favour of another event, independent to the former are 6 to 5. Find the probability that (i) at least one of the events will occur, and (ii) none of the events will occur.


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.


Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2  


A bag contains 6 black and 3 white balls. Another bag contains 5 black and 4 white balls. If one ball is drawn from each bag, find the probability that these two balls are of the same colour.

 

Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that first ball is black and second is red. 


A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?

 


A bag contains 7 white, 5 black and 4 red balls. Four balls are drawn without replacement. Find the probability that at least three balls are black.

 

A card is drawn from a well-shuffled deck of 52 cards. The outcome is noted, the card is replaced and the deck reshuffled. Another card is then drawn from the deck.
(i) What is the probability that both the cards are of the same suit?
(ii) What is the probability that the first card is an ace and the second card is a red queen?


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?


One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball is transferred from first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.


Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.

 

A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is


India play two matches each with West Indies and Australia. In any match the probabilities of India getting 0,1 and 2 points are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is


Three integers are chosen at random from the first 20 integers. The probability that their product is even is 


Two dice are thrown simultaneously. The probability of getting a pair of aces is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floors is


A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is


A and B are two students. Their chances of solving a problem correctly are `1/3` and `1/4`  respectively. If the probability of their making common error is `1/20` and they obtain the same answer, then the probability of their answer to be correct is
 

 
 

Mark the correct alternative in the following question: 

\[\text{ If A and B are such that } P\left( A \cup B \right) = \frac{5}{9} \text{ and } P\left( \overline{A} \cup \overline{B} \right) = \frac{2}{3}, \text{ then } P\left( A \right) + P\left( B \right) = \]


Mark the correct alternative in the following question:

\[\text{ Let A and B be two events such that P } \left( A \right) = 0 . 6, P\left( B \right) = 0 . 2, P\left( A|B \right) = 0 . 5 . \text{ Then } P\left( \overline{A}|\overline{B} \right) \text{ equals } \]

 


Refer to Question 6. Calculate the probability that the defective tube was produced on machine E1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×