Advertisements
Advertisements
प्रश्न
Three persons A, B, C throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.
उत्तर
\[P\left( \text{ six } \right) = \frac{1}{6}\]
\[P\left( \text{ no six }\right) = \frac{5}{6}\]
\[P\left(\text{ A winning } \right) = P\left( \text{ 6 in first throw } \right) + P\left( \text{ 6 in fourth throw } \right) + . . . \]
\[ = \frac{1}{6} + \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} + . . . \]
\[ = \frac{1}{6}\left[ 1 + \left( \frac{5}{6} \right)^3 + \left( \frac{5}{6} \right)^6 + . . . \right]\]
\[ = \frac{1}{6}\left[ \frac{1}{1 - \frac{125}{216}} \right] \left[ {1+a+a}^2 {+a}^3 + . . . =\frac{1}{1 - a} \right]\]
\[ = \frac{1}{6} \times \frac{216}{91}\]
\[ = \frac{36}{91}\]
\[P\left( \text{ B winning } \right) = P\left( \text{ 6 in second throw} \right) + P\left( \text{ 6 in fifth throw } \right) + . . . \]
\[ = \frac{5}{6} \times \frac{1}{6} + \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} + . . . \]
\[ = \frac{5}{36}\left[ 1 + \left( \frac{5}{6} \right)^3 + \left( \frac{5}{6} \right)^6 + . . . \right]\]
\[ = \frac{5}{36}\left[ \frac{1}{1 - \frac{125}{216}} \right] \left[ {1+a+a}^2 {+a}^3 + . . . =\frac{1}{1 - a} \right]\]
\[ = \frac{5}{36} \times \frac{216}{91}\]
\[ = \frac{30}{91}\]
\[P\left( \text{ C winning } \right) = P\left( \text{ 6 in third throw } \right) + P\left( \text{ 6 in sixth throw } \right) + . . . \]
\[ = \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} + \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{2} + . . . \]
\[ = \frac{25}{216}\left[ 1 + \left( \frac{5}{6} \right)^3 + \left( \frac{5}{6} \right)^6 + . . . \right]\]
\[ = \frac{25}{216}\left[ \frac{1}{1 - \frac{125}{216}} \right] \left[ {1+a+a}^2 {+a}^3 + . . . =\frac{1}{1 - a} \right]\]
\[ = \frac{25}{216} \times \frac{216}{91}\]
\[ = \frac{25}{91}\]
APPEARS IN
संबंधित प्रश्न
Compute P (A/B), if P (B) = 0.5 and P (A ∩ B) = 0.32
If P (A) = 0.4, P (B) = 0.3 and P (B/A) = 0.5, find P (A ∩ B) and P (A/B).
If A and B are two events such that P (A) = \[\frac{1}{3},\] P (B) = \[\frac{1}{5}\] and P (A ∪ B) = \[\frac{11}{30}\] , find P (A/B) and P (B/A).
From a pack of 52 cards, two are drawn one by one without replacement. Find the probability that both of them are kings.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that both are kings .
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a king and the second is an ace.
An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black?
If P (A) = \[\frac{6}{11},\] P (B) = \[\frac{5}{11}\] and P (A ∪ B) = \[\frac{7}{11},\] find
Two numbers are selected at random from integers 1 through 9. If the sum is even, find the probability that both the numbers are odd.
A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?
Two dice are thrown and it is known that the first die shows a 6. Find the probability that the sum of the numbers showing on two dice is 7.
A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
B = the card drawn is a spade, B = the card drawn in an ace.
Given the probability that A can solve a problem is 2/3 and the probability that B can solve the same problem is 3/5. Find the probability that none of the two will be able to solve the problem.
Three cards are drawn with replacement from a well shuffled pack of cards. Find the probability that the cards drawn are king, queen and jack.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that both of them will be selected ?
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that none of them will be selected?
A bag contains 4 white balls and 2 black balls. Another contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that
(i) both are white
(ii) both are black
(iii) one is white and one is black
The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.
A, B and C in order toss a coin. The one to throw a head wins. What are their respective chances of winning assuming that the game may continue indefinitely?
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?
In a hockey match, both teams A and B scored same number of goals upto the end of the game, so to decide the winner, the refree asked both the captains to throw a die alternately and decide that the team, whose captain gets a first six, will be declared the winner. If the captain of team A was asked to start, find their respective probabilities of winning the match and state whether the decision of the refree was fair or not.
An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the sum of the numbers obtained is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered 2, 3, 4, ..., 12 is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8?
A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.
An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls. Two are drawn from first urn and put into the second urn and then a ball is drawn from the latter. Find the probability that its is a white ball.
When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.
6 boys and 6 girls sit in a row at random. Find the probability that all the girls sit together.
Write the probability that a number selected at random from the set of first 100 natural numbers is a cube.
If A and B are two independent events, then write P (A ∩ \[B\] ) in terms of P (A) and P (B).
If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of Aand B occurs) = \[\frac{5}{9}\], then find the value of p.
A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is
A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is
A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is
Two persons A and B take turns in throwing a pair of dice. The first person to throw 9 from both dice will be awarded the prize. If A throws first, then the probability that Bwins the game is
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that } P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( B \cap A \right) \text{ equals } \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that} P\left( A \right) \neq 0 \text{ and } P\left( B \right) \neq 1,\text{ then } P\left( \overline{ A }|\overline{ B }\right) = \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events such that} P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]
Mark the correct alternative in the following question:
A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number of the die and a spade card is
If two events A and B are such that P (A)
\[\left( \overline{ A } \right)\] = 0.3, P (B) = 0.4 and P (A ∩ B) = 0.5, find P \[\left( B/\overline{ A }\cap \overline{ B } \right)\].
Out of 8 outstanding students of a school, in which there are 3 boys and 5 girls, a team of 4 students is to be selected for a quiz competition. Find the probability that 2 boys and 2 girls are selected.