Advertisements
Advertisements
प्रश्न
Two numbers are selected at random from integers 1 through 9. If the sum is even, find the probability that both the numbers are odd.
उत्तर
\[\text{ Suppose O represents the event of getting two odd numbers and S represents the event of getting their sum as an even number } . \]
\[\text{ Now } , \]
\[P\left( O/S \right) = \frac{P\left( O \cap S \right)}{P\left( S \right)} = \frac{\frac{{}^5 C_2}{{}^9 C_2}}{\frac{\left( {}^4 C_2 +^5 C_2 \right)}{{}^9 C_2}} = \frac{{}^5 C_2}{{}^4 C_2 +^5 C_2} = \frac{10}{16} = \frac{5}{8}\]
\[\]
APPEARS IN
संबंधित प्रश्न
Compute P (A/B), if P (B) = 0.5 and P (A ∩ B) = 0.32
From a deck of cards, three cards are drawn on by one without replacement. Find the probability that each time it is a card of spade.
If A and B are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).
If A and B are two events such that \[ P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13}, \text{ then find } P\left( \overline{ A }|B \right) . \]
If P (A) = \[\frac{6}{11},\] P (B) = \[\frac{5}{11}\] and P (A ∪ B) = \[\frac{7}{11},\] find
A coin is tossed three times. Find P (A/B) in each of the following:
A = At least two heads, B = At most two heads
Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.
Mother, father and son line up at random for a family picture. If A and B are two events given by A = Son on one end, B = Father in the middle, find P (A/B) and P (B/A).
A die is rolled. If the outcome is an odd number, what is the probability that it is prime?
Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.
A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?
Two dice are thrown and it is known that the first die shows a 6. Find the probability that the sum of the numbers showing on two dice is 7.
Assume that each born child is equally likely to be a boy or a girl. If a family has two children, then what is the constitutional probability that both are girls? Given that
(i) the youngest is a girl (b) at least one is a girl.
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.
If A and B are two independent events such that P (A ∪ B) = 0.60 and P (A) = 0.2, find P(B).
A die is tossed twice. Find the probability of getting a number greater than 3 on each toss.
A bag contains 3 red and 2 black balls. One ball is drawn from it at random. Its colour is noted and then it is put back in the bag. A second draw is made and the same procedure is repeated. Find the probability of drawing (i) two red balls, (ii) two black balls, (iii) first red and second black ball.
Three cards are drawn with replacement from a well shuffled pack of cards. Find the probability that the cards drawn are king, queen and jack.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that (i) both balls are red, (ii) first ball is black and second is red, (iii) one of them is black and other is red.
The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.
Two dice are thrown together and the total score is noted. The event E, F and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: (1 - p1)p2
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.
A bag contains 3 white, 4 red and 5 black balls. Two balls are drawn one after the other, without replacement. What is the probability that one is white and the other is black?
A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.
Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?
The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.
There are three urns A, B, and C. Urn A contains 4 red balls and 3 black balls. urn B contains 5 red balls and 4 black balls. Urn C contains 4 red and 4 black balls. One ball is drawn from each of these urns. What is the probability that 3 balls drawn consists of 2 red balls and a black ball?
A card is drawn from a well-shuffled deck of 52 cards. The outcome is noted, the card is replaced and the deck reshuffled. Another card is then drawn from the deck.
(i) What is the probability that both the cards are of the same suit?
(ii) What is the probability that the first card is an ace and the second card is a red queen?
A purse contains 2 silver and 4 copper coins. A second purse contains 4 silver and 3 copper coins. If a coin is pulled at random from one of the two purses, what is the probability that it is a silver coin?
6 boys and 6 girls sit in a row at random. Find the probability that all the girls sit together.
If A and B are two independent events such that P (A) = 0.3 and P (A ∪ \[B\]) = 0.8. Find P (B).
An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.
A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is
The probabilities of a student getting I, II and III division in an examination are \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.
If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that } P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( B \cap A \right) \text{ equals } \]