Advertisements
Advertisements
प्रश्न
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
पर्याय
\[\frac{1}{3}\]
\[\frac{1}{4}\]
\[\frac{5}{12}\]
\[\frac{2}{3}\]
उत्तर
\[\frac{2}{3}\]
\[\text{ We know that the bag contains 5B (black), 4W (white) and 3R (red) balls }. \]
\[\text{ Now} , \]
\[P\left( B \right) = \frac{5}{12}\]
\[P\left( R \right) = \frac{3}{12}\]
\[P\left( B\text{ or } R \right) = P\left( B \right) + P\left( R \right)\]
\[ = \frac{5}{12} + \frac{3}{12}\]
\[ = \frac{8}{12} = \frac{2}{3}\]
APPEARS IN
संबंधित प्रश्न
A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?
How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%?
An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.
In a shop X, 30 tins of pure ghee and 40 tins of adulterated ghee which look alike, are kept for sale while in shop Y, similar 50 tins of pure ghee and 60 tins of adulterated ghee are there. One tin of ghee is purchased from one of the randomly selected shops and is found to be adulterated. Find the probability that it is purchased from shop Y. What measures should be taken to stop adulteration?
A bag contains 25 tickets, numbered from 1 to 25. A ticket is drawn and then another ticket is drawn without replacement. Find the probability that both tickets will show even numbers.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a king and the second is an ace.
An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?
If P (A) = 0.4, P (B) = 0.8, P (B/A) = 0.6. Find P (A/B) and P (A ∪ B).
If A and B are two events such that\[ P\left( A \right) = \frac{6}{11}, P\left( B \right) = \frac{5}{11} \text{ and } P\left( A \cup B \right) = \frac{7}{11}, \text{ then find } P\left( A \cap B \right), P\left( A|B \right) \text { and } P\left( B|A \right) . \]
If A and B are two events such that 2 P (A) = P (B) = \[\frac{5}{13}\] and P (A/B) = \[\frac{2}{5},\] find P (A ∪ B).
Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.
Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.
A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
A = The card drawn is a king or queen, B = the card drawn is a queen or jack.
A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
A = the card drawn is black, B = the card drawn is a king.
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.
Kamal and Monica appeared for an interview for two vacancies. The probability of Kamal's selection is 1/3 and that of Monika's selection is 1/5. Find the probability that
(i) both of them will be selected
(ii) none of them will be selected
(iii) at least one of them will be selected
(iv) only one of them will be selected.
Arun and Tarun appeared for an interview for two vacancies. The probability of Arun's selection is 1/4 and that to Tarun's rejection is 2/3. Find the probability that at least one of them will be selected.
In a family, the husband tells a lie in 30% cases and the wife in 35% cases. Find the probability that both contradict each other on the same fact.
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that both of them will be selected ?
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that none of them will be selected?
A bag contains 4 white balls and 2 black balls. Another contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that
(i) both are white
(ii) both are black
(iii) one is white and one is black
A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?
The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.
X is taking up subjects - Mathematics, Physics and Chemistry in the examination. His probabilities of getting grade A in these subjects are 0.2, 0.3 and 0.5 respectively. Find the probability that he gets
(i) Grade A in all subjects
(ii) Grade A in no subject
(iii) Grade A in two subjects.
Three persons A, B, C throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.
There are 3 red and 5 black balls in bag 'A'; and 2 red and 3 black balls in bag 'B'. One ball is drawn from bag 'A' and two from bag 'B'. Find the probability that out of the 3 balls drawn one is red and 2 are black.
A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins.
An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the sum of the numbers obtained is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered 2, 3, 4, ..., 12 is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8?
If A and B are two independent events such that P (A) = 0.3 and P (A ∪ \[B\]) = 0.8. Find P (B).
If one ball is drawn at random from each of three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, then the probability that 2 white and 1 black balls will be drawn is
A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is
A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is
If P (A ∪ B) = 0.8 and P (A ∩ B) = 0.3, then P \[\left( A \right)\] \[\left( A \right)\] + P \[\left( B \right)\] =
Choose the correct alternative in the following question:
Associated to a random experiment two events A and B are such that
Mark the correct alternative in the following question
Three persons, A, B and C fire a target in turn starting with A. Their probabilities of hitting the target are 0.4, 0.2 and 0.2, respectively. The probability of two hits is