Advertisements
Advertisements
प्रश्न
A bag contains 4 white balls and 2 black balls. Another contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that
(i) both are white
(ii) both are black
(iii) one is white and one is black
उत्तर
\[\text{ Given } :\]
\[\text{ Bag } 1=\left( 4W+2B \right)\text{ balls} \]
\[\text{ Bag }2=\left( 3W+5B \right)\text{ balls } \]
\[\left( i \right) P\left( \text{ both are white } \right) = \frac{4}{6} \times \frac{3}{8}\]
\[ = \frac{1}{4}\]
\[\left( ii \right) P\left( \text{ both are black } \right) = \frac{2}{6} \times \frac{5}{8}\]
\[ = \frac{5}{24}\]
\[\left( iii \right) P\left( \text{ one is white and one is black } \right) = P\left( \text{ white from bag 1 and black from bag } 2 \right) + P\left( \text{ white from bag 2 and black from bag } 1 \right)\]
\[ = \frac{4}{6} \times \frac{5}{8} + \frac{3}{8} \times \frac{2}{6}\]
\[ = \frac{20}{48} + \frac{6}{48}\]
\[ = \frac{26}{48}\]
\[ = \frac{13}{24}\]
APPEARS IN
संबंधित प्रश्न
A and B throw a pair of dice alternately, till one of them gets a total of 10 and wins the game. Find their respective probabilities of winning, if A starts first
In a shop X, 30 tins of pure ghee and 40 tins of adulterated ghee which look alike, are kept for sale while in shop Y, similar 50 tins of pure ghee and 60 tins of adulterated ghee are there. One tin of ghee is purchased from one of the randomly selected shops and is found to be adulterated. Find the probability that it is purchased from shop Y. What measures should be taken to stop adulteration?
Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls. Two balls are transferred at random from bag A to bag B and then a ball is drawn from bag B at random. If the ball drawn from bag B is found to be red find the probability that two red balls were transferred from A to B.
Given that the two numbers appearing on throwing two dice are different. Find the probability of the event 'the sum of numbers on the dice is 4'.
Compute P (A/B), if P (B) = 0.5 and P (A ∩ B) = 0.32
From a deck of cards, three cards are drawn on by one without replacement. Find the probability that each time it is a card of spade.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a king and the second is an ace.
A bag contains 20 tickets, numbered from 1 to 20. Two tickets are drawn without replacement. What is the probability that the first ticket has an even number and the second an odd number.
A pair of dice is thrown. Find the probability of getting the sum 8 or more, if 4 appears on the first die.
Two numbers are selected at random from integers 1 through 9. If the sum is even, find the probability that both the numbers are odd.
In a school there are 1000 students, out of which 430 are girls. It is known that out of 430, 10% of the girls study in class XII. What is the probability that a student chosen randomly studies in class XII given that the chosen student is a girl?
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find \[P \overline A \cup \overline B \] .
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A/B) .
The probability that A hits a target is 1/3 and the probability that B hits it, is 2/5, What is the probability that the target will be hit, if each one of A and B shoots at the target?
An anti-aircraft gun can take a maximum of 4 shots at an enemy plane moving away from it. The probabilities of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1 respectively. What is the probability that the gun hits the plane?
A speaks truth in 75% and B in 80% of the cases. In what percentage of cases are they likely to contradict each other in narrating the same incident?
The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.
There are three urns A, B, and C. Urn A contains 4 red balls and 3 black balls. urn B contains 5 red balls and 4 black balls. Urn C contains 4 red and 4 black balls. One ball is drawn from each of these urns. What is the probability that 3 balls drawn consists of 2 red balls and a black ball?
X is taking up subjects - Mathematics, Physics and Chemistry in the examination. His probabilities of getting grade A in these subjects are 0.2, 0.3 and 0.5 respectively. Find the probability that he gets
(i) Grade A in all subjects
(ii) Grade A in no subject
(iii) Grade A in two subjects.
A, B and C in order toss a coin. The one to throw a head wins. What are their respective chances of winning assuming that the game may continue indefinitely?
There are 3 red and 5 black balls in bag 'A'; and 2 red and 3 black balls in bag 'B'. One ball is drawn from bag 'A' and two from bag 'B'. Find the probability that out of the 3 balls drawn one is red and 2 are black.
An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting
(i) 2 red balls
(ii) 2 blue balls
(iii) One red and one blue ball.
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?
In a hockey match, both teams A and B scored same number of goals upto the end of the game, so to decide the winner, the refree asked both the captains to throw a die alternately and decide that the team, whose captain gets a first six, will be declared the winner. If the captain of team A was asked to start, find their respective probabilities of winning the match and state whether the decision of the refree was fair or not.
The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.
A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.
6 boys and 6 girls sit in a row at random. Find the probability that all the girls sit together.
Write the probability that a number selected at random from the set of first 100 natural numbers is a cube.
If A, B, C are mutually exclusive and exhaustive events associated to a random experiment, then write the value of P (A) + P (B) + P (C).
If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, find P (A ∪ B).
A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.
Choose the correct alternative in the following question:
If A and B are two events associated to a random experiment such that \[P\left( A \cap B \right) = \frac{7}{10} \text{ and } P\left( B \right) = \frac{17}{20}\] , then P(A|B) =
Choose the correct alternative in the following question:
Associated to a random experiment two events A and B are such that
Mark the correct alternative in the following question:
\[\text{ Let A and B are two events such that } P\left( A \right) = \frac{3}{8}, P\left( B \right) = \frac{5}{8} \text{ and } P\left( A \cup B \right) = \frac{3}{4} . \text{ Then } P\left( A|B \right) \times P\left( A \cap B \right) \text{ is equals to } \]
Mark the correct alternative in the following question:
\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]
Mark the correct alternative in the following question:
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is
A coin is tossed 5 times. Find the probability of getting (i) at least 4 heads, and (ii) at most 4 heads.