Advertisements
Advertisements
प्रश्न
Write the probability that a number selected at random from the set of first 100 natural numbers is a cube.
उत्तर
\[\text{ Number of cubes in first 100 natural numbers } =1, 8, 27, 64\]
\[\text{ So, there are 4 cubes in first 100 natural numbers.} \]
\[P\left( \text{ getting a cube from a set of first 100 natural numbers }\right) = \frac{4}{100}\]
\[ = \frac{1}{25}\]
APPEARS IN
संबंधित प्रश्न
In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from this set and tossed five times. If all the five times, the result was heads, find the probability that the selected coin had heads on both the sides.
An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.
A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a heart and second is red.
An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black?
A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale otherwise it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.
If A and B are two events such that \[ P\left( A \right) = \frac{1}{3}, P\left( B \right) = \frac{1}{4} \text{ and } P\left( A \cup B \right) = \frac{5}{12}, \text{ then find } P\left( A|B \right) \text{ and } P\left( B|A \right) . \]
Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.
Two dice are thrown. Find the probability that the numbers appeared has the sum 8, if it is known that the second die always exhibits 4.
A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?
A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).
The probability that a student selected at random from a class will pass in Mathematics is `4/5`, and the probability that he/she passes in Mathematics and Computer Science is `1/2`. What is the probability that he/she will pass in Computer Science if it is known that he/she has passed in Mathematics?
In a school there are 1000 students, out of which 430 are girls. It is known that out of 430, 10% of the girls study in class XII. What is the probability that a student chosen randomly studies in class XII given that the chosen student is a girl?
A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
A = the card drawn is black, B = the card drawn is a king.
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∩ B).
Given two independent events A and B such that P (A) = 0.3 and P (B) = `0.6. Find P (A ∩ overlineB ) `.
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A/B) .
If P (not B) = 0.65, P (A ∪ B) = 0.85, and A and B are independent events, then find P (A).
Given the probability that A can solve a problem is 2/3 and the probability that B can solve the same problem is 3/5. Find the probability that none of the two will be able to solve the problem.
An anti-aircraft gun can take a maximum of 4 shots at an enemy plane moving away from it. The probabilities of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1 respectively. What is the probability that the gun hits the plane?
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 p2 .
Kamal and Monica appeared for an interview for two vacancies. The probability of Kamal's selection is 1/3 and that of Monika's selection is 1/5. Find the probability that
(i) both of them will be selected
(ii) none of them will be selected
(iii) at least one of them will be selected
(iv) only one of them will be selected.
A, B and C in order toss a coin. The one to throw a head wins. What are their respective chances of winning assuming that the game may continue indefinitely?
Three persons A, B, C throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?
A bag A contains 5 white and 6 black balls. Another bag B contains 4 white and 3 black balls. A ball is transferred from bag A to the bag B and then a ball is taken out of the second bag. Find the probability of this ball being black.
The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?
One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball is transferred from first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.
If A and B are two events write the expression for the probability of occurrence of exactly one of two events.
If one ball is drawn at random from each of three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, then the probability that 2 white and 1 black balls will be drawn is
A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is
A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.
Choose the correct alternative in the following question:
\[\text{ If } P\left( A \right) = \frac{2}{5}, P\left( B \right) = \frac{3}{10} \text{ and } P\left( A \cap B \right) = \frac{1}{5}, \text{ then } , P\left( \overline { A }|\overline{ B } \right) P\left( \overline{ B }|\overline{ A } \right) \text{ is equal to } \]
Mark the correct alternative in the following question:
\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events with } P\left( A \right) = \frac{3}{5} \text{ and } P\left( B \right) = \frac{4}{9}, \text{ then } P\left( \overline{A} \cap B \right) \text{ equals } \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events such that} P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]
Mark the correct alternative in the following question:
\[\text{ Let A and B be two events such that P } \left( A \right) = 0 . 6, P\left( B \right) = 0 . 2, P\left( A|B \right) = 0 . 5 . \text{ Then } P\left( \overline{A}|\overline{B} \right) \text{ equals } \]
A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.