Advertisements
Advertisements
प्रश्न
A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.
उत्तर
Let E: getting a total of 9
∴ `"E" = {(3,6),(4,5),(5,4),(6,3)}`
So, clearly 4 1 probability of winning = P(E) = `(4)/(36) = (1)/(9), "P"(bar"E") = (8)/(9)`
As A starts the game so, he may win in 1st, 4th, 7th, ... trials.
∴ `"P"("A wins") = "P"(bar"E") + "P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E")+ "P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E") + ...`
⇒ `"P"("A wins") = (1)/(9) + (8/9)^3 xx (1)/(9) (8/9)^6 xx (1)/(9)+...`
∴ `"P"("A wins") = ((1)/(9))/((1- 512)/(729))`
= `(81)/(217)`.
Now B may win in 2nd, 5th, 8th,...trials.
∴ `"P"("A wins") = "P"(bar"E")"P"(bar"E") + "P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E")+ "P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E")"P"(bar"E")+...`
⇒ `"P"("A wins") = (8)/(9) xx (1)/(9) + (8/9)^4 xx (1)/(9) + (8/9)^7 xx (1)/(9) +...`
∴ `"P"("A wins") = ((8)/(81))/(1 - (821)/(729))`
= `(72)/(217)`
And, finally
`"P"("C wins") = 1-["P"("A wins")+"P"("B wins")]`
= `1 - [(81)/(217 + (72)/(217)]]`
= `(64)/(217)`.
APPEARS IN
संबंधित प्रश्न
How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%?
Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?
Assume that each child born is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girl, (ii) at least one is a girl?
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that both are kings .
A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.
A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale otherwise it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.
A pair of dice is thrown. Find the probability of getting the sum 8 or more, if 4 appears on the first die.
Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.
A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the number of heads is odd, B = the number of tails is odd.
Prove that in throwing a pair of dice, the occurrence of the number 4 on the first die is independent of the occurrence of 5 on the second die.
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∩ B).
Given two independent events A and B such that P (A) = 0.3 and P (B) = `0.6. Find P (A ∩ overlineB ) `.
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (B/A) .
A die is tossed twice. Find the probability of getting a number greater than 3 on each toss.
An article manufactured by a company consists of two parts X and Y. In the process of manufacture of the part X, 9 out of 100 parts may be defective. Similarly, 5 out of 100 are likely to be defective in the manufacture of part Y. Calculate the probability that the assembled product will not be defective.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 p2 .
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: (1 - p1)p2
A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?
A factory has two machines A and B. Past records show that the machine A produced 60% of the items of output and machine B produced 40% of the items. Further 2% of the items produced by machine A were defective and 1% produced by machine B were defective. If an item is drawn at random, what is the probability that it is defective?
An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls. Two are drawn from first urn and put into the second urn and then a ball is drawn from the latter. Find the probability that its is a white ball.
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is
If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =
Mark the correct alternative in the following question:
\[ \text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( \overline{A \cup B }\right) = \frac{4}{5}, \text{ then } P\left( \overline{ A } \cup B \right) + P\left( A \cup B \right) = \]
Mark the correct alternative in the following question:
\[\text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( A \cup B \right) = \frac{4}{5}, \text{ then } P\left( B|\overline{ A } \right) = \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events such that} P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]
Mother, father and son line up at random for a family photo. If A and B are two events given by
A = Son on one end, B = Father in the middle, find P(B / A).