Advertisements
Advertisements
प्रश्न
Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?
उत्तर
Sample space, S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Consider the given events.
A = An even number on the card
B = A number more than 3 on the card
Clearly,
A = {2, 4, 6, 8, 10}
B = {4, 5, 6, 7, 8, 9, 10}
\[\text{ Now } , \]
\[A \cap B = \left\{ 4, 6, 8, 10 \right\}\]
\[ \therefore \text{ Required probability } = P\left( A/B \right) = \frac{n\left( A \cap B \right)}{n\left( B \right)} = \frac{4}{7}\]
APPEARS IN
संबंधित प्रश्न
A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins
A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B, If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.
A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that both are kings .
A bag contains 20 tickets, numbered from 1 to 20. Two tickets are drawn without replacement. What is the probability that the first ticket has an even number and the second an odd number.
A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.
If A and B are two events such that \[ P\left( A \right) = \frac{1}{3}, P\left( B \right) = \frac{1}{4} \text{ and } P\left( A \cup B \right) = \frac{5}{12}, \text{ then find } P\left( A|B \right) \text{ and } P\left( B|A \right) . \]
A coin is tossed three times. Find P (A/B) in each of the following:
A = At least two heads, B = At most two heads
A die is thrown three times. Find P (A/B) and P (B/A), if
A = 4 appears on the third toss, B = 6 and 5 appear respectively on first two tosses.
Mother, father and son line up at random for a family picture. If A and B are two events given by A = Son on one end, B = Father in the middle, find P (A/B) and P (B/A).
A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).
A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
A = the card drawn is black, B = the card drawn is a king.
Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (B/A) .
If P (not B) = 0.65, P (A ∪ B) = 0.85, and A and B are independent events, then find P (A).
If A and B are two independent events such that P (A ∪ B) = 0.60 and P (A) = 0.2, find P(B).
Given the probability that A can solve a problem is 2/3 and the probability that B can solve the same problem is 3/5. Find the probability that none of the two will be able to solve the problem.
The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.
A bag contains 3 white, 4 red and 5 black balls. Two balls are drawn one after the other, without replacement. What is the probability that one is white and the other is black?
Three persons A, B, C throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?
An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the sum of the numbers obtained is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered 2, 3, 4, ..., 12 is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8?
An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls. Two are drawn from first urn and put into the second urn and then a ball is drawn from the latter. Find the probability that its is a white ball.
A bag contains 6 red and 8 black balls and another bag contains 8 red and 6 black balls. A ball is drawn from the first bag and without noticing its colour is put in the second bag. A ball is drawn from the second bag. Find the probability that the ball drawn is red in colour.
Three digit numbers are formed with the digits 0, 2, 4, 6 and 8. Write the probability of forming a three digit number with the same digits.
Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.
An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.
If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, find P (A ∪ B).
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
Choose the correct alternative in the following question:
If A and B are two events associated to a random experiment such that \[P\left( A \cap B \right) = \frac{7}{10} \text{ and } P\left( B \right) = \frac{17}{20}\] , then P(A|B) =
Choose the correct alternative in the following question:
Associated to a random experiment two events A and B are such that
Mark the correct alternative in the following question:A flash light has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, then the probability that both are dead is
A coin is tossed 5 times. Find the probability of getting (i) at least 4 heads, and (ii) at most 4 heads.
An insurance company insured 3000 cyclists, 6000 scooter drivers, and 9000 car drivers. The probability of an accident involving a cyclist, a scooter driver, and a car driver are 0⋅3, 0⋅05 and 0⋅02 respectively. One of the insured persons meets with an accident. What is the probability that he is a cyclist?