मराठी

If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, Find P (A ∪ B). - Mathematics

Advertisements
Advertisements

प्रश्न

If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, find P (A ∪ B).

 

उत्तर

\[P\left( \frac{B}{A} \right) = \frac{P\left( A \cap B \right)}{P\left( A \right)}\]
\[ \Rightarrow 0 . 5 = \frac{P\left( A \cap B \right)}{0 . 3}\]
\[ \Rightarrow P\left( A \cap B \right) = 0 . 5 \times 0 . 3\]
\[ \Rightarrow P\left( A \cap B \right) = 0 . 15\]
\[\text{ Now },\]
\[P\left( A \cup B \right) = P\left( A \right) + P\left( B \right) - P\left( A \cap B \right)\]
\[ = 0 . 3 + 0 . 6 - 0 . 15\]
\[ = 0 . 9 - 0 . 15\]
\[ = 0 . 75\]

shaalaa.com
Probability Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 31: Probability - Very Short Answers [पृष्ठ १०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 31 Probability
Very Short Answers | Q 15 | पृष्ठ १०३

संबंधित प्रश्‍न

A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the probability of
(i) 5 successes?
(ii) at least 5 successes?
(iii) at most 5 successes?


In a shop X, 30 tins of pure ghee and 40 tins of adulterated ghee which look alike, are kept for sale while in shop Y, similar 50 tins of pure ghee and 60 tins of adulterated ghee are there. One tin of ghee is purchased from one of the randomly selected shops and is found to be adulterated. Find the probability that it is purchased from shop Y. What measures should be taken to stop adulteration?


Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls. Two balls are transferred at random from bag A to bag B and then a ball is drawn from bag B at random. If the ball drawn from bag B is found to be red find the probability that two red balls were transferred from A to B.


A coin is tossed three times, if head occurs on first two tosses, find the probability of getting head on third toss.


A bag contains 25 tickets, numbered from 1 to 25. A ticket is drawn and then another ticket is drawn without replacement. Find the probability that both tickets will show even numbers.


An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?


If A and B are events such that P (A) = 0.6, P (B) = 0.3 and P (A ∩ B) = 0.2, find P (A/B) and P (B/A).


A coin is tossed three times. Find P (A/B) in each of the following:

A = At most two tails, B = At least one tail.


Two dice are thrown. Find the probability that the numbers appeared has the sum 8, if it is known that the second die always exhibits 4.


A pair of dice is thrown. Find the probability of getting 7 as the sum, if it is known that the second die always exhibits an odd number.


A pair of dice is thrown. Find the probability of getting 7 as the sum if it is known that the second die always exhibits a prime number.


Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.


Prove that in throwing a pair of dice, the occurrence of the number 4 on the first die is independent of the occurrence of 5 on the second die.


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?

A = the card drawn is black, B = the card drawn is a king.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.


Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`


Three cards are drawn with replacement from a well shuffled pack of cards. Find the probability that the cards drawn are king, queen and jack.


A die is thrown thrice. Find the probability of getting an odd number at least once.

 

The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.

 

Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are:  `1 - (1 - p_1 )(1 -p_2 ) `


A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.

 

Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?

 

A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that none of them will be selected?

 

 


A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?

 

There are 3 red and 5 black balls in bag 'A'; and 2 red and 3 black balls in bag 'B'. One ball is drawn from bag 'A' and two from bag 'B'. Find the probability that out of the 3 balls drawn one is red and 2 are black.

 

One bag contains 4 yellow and 5 red balls. Another bag contains 6 yellow and 3 red balls. A ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that ball drawn is yellow.


An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.


If ABC are mutually exclusive and exhaustive events associated to a random experiment, then write the value of P (A) + P (B) + P (C).


The probabilities of a student getting I, II and III division in an examination are  \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is

 

A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is


A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.


If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =


A and B are two students. Their chances of solving a problem correctly are `1/3` and `1/4`  respectively. If the probability of their making common error is `1/20` and they obtain the same answer, then the probability of their answer to be correct is
 

 
 

Mark the correct alternative in the following question:
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is


If two events A and B are such that P (A)

 \[\left( \overline{ A } \right)\] = 0.3, P (B) = 0.4 and P (A ∩ B) = 0.5, find P \[\left( B/\overline{ A }\cap \overline{ B } \right)\]. 


There are two boxes I and II. Box I contains 3 red and 6 Black balls. Box II contains 5 red and black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is ' a find the value of n 


A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×