मराठी

A Die is Thrown 6 Times. If ‘Getting an Odd Number’ is a Success, What is the Probability of - Mathematics

Advertisements
Advertisements

प्रश्न

A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the probability of
(i) 5 successes?
(ii) at least 5 successes?
(iii) at most 5 successes?

बेरीज

उत्तर

The repeated tosses of a die are Bernoulli trials. Let X denote the number of successes of getting odd numbers in an experiment of 6 trials.

Probability of getting an odd number in a single throw of a die is p = 3/6 =1/2

`:. q = 1 - p=1/2`

X has a binomial distribution.

Therefore, P (X = x) = `""^n"C"_(n-x) q^(n-x) p^x, "where"  n = 0,1,2  ...n`

= `""^6"C"_x (1/2)^(6-x) .(1/2)^x`

= `""^6"C"_x(1/2)^6`

(i) P (5 successes) = P (X = 5)

= `""^6"C"_5(1/2)^6`

= `6·1/64` 

= `3/32`

(ii) P(at least 5 successes) = P(X ≥ 5)

= P(x =5)+P(x=6)

= `""^6"C"_5 (1/2)^6 + ""^6"C"_6(1/2)^6`

= `6·1/64+1·1/64`

= `7/64`

(iii) P (at most 5 successes) = P(X ≤ 5)

= l - P(X>5)

= l - P (X =6)

= `l - ""^6"C"_6 (1/2)^6`

= `l - 1/64`

= `63/64`

shaalaa.com
Probability Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Probability - Exercise 13.5 [पृष्ठ ५७६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 13 Probability
Exercise 13.5 | Q 1 | पृष्ठ ५७६

संबंधित प्रश्‍न

Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?


If P (A) = 0.4, P (B) = 0.3 and P (B/A) = 0.5, find P (A ∩ B) and P (A/B).

 

 If P (A) = \[\frac{7}{13}\], P (B) = \[\frac{9}{13}\]  and P (A ∩ B) = \[\frac{4}{13}\], find P (A/B).

 
 
 
 

If A and B are events such that P (A) = 0.6, P (B) = 0.3 and P (A ∩ B) = 0.2, find P (A/B) and P (B/A).


If A and are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).

 

If A and B are two events such that \[ P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13}, \text{ then find } P\left( \overline{ A }|B \right) . \]


A coin is tossed three times. Find P (A/B) in each of the following:
A = Heads on third toss, B = Heads on first two tosses.


A coin is tossed three times. Find P (A/B) in each of the following:

A = At least two heads, B = At most two heads


A coin is tossed three times. Find P (A/B) in each of the following:

A = At most two tails, B = At least one tail.


A die is thrown three times. Find P (A/B) and P (B/A), if
A = 4 appears on the third toss, B = 6 and 5 appear respectively on first two tosses.


A dice is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?


Two numbers are selected at random from integers 1 through 9. If the sum is even, find the probability that both the numbers are odd.


A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?

A = the number of heads is two, B = the last throw results in head.


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find \[P \overline A \cup \overline B \] .


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A/B) .


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (B/A) .


The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.

 

Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 p2 .


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that first ball is black and second is red. 


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.


A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.

 

A bag contains 4 white balls and 2 black balls. Another contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that
(i) both are white
(ii) both are black
(iii) one is white and one is black


A and B take turns in throwing two dice, the first to throw 10 being awarded the prize, show that if A has the first throw, their chance of winning are in the ratio 12 : 11.


Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.

 

If A and B are two events write the expression for the probability of occurrence of exactly one of two events.


If ABC are mutually exclusive and exhaustive events associated to a random experiment, then write the value of P (A) + P (B) + P (C).


If A and B are two independent events, then write P (A ∩ \[B\] ) in terms of P (A) and P (B).

 
 

Two dice are thrown simultaneously. The probability of getting a pair of aces is


A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is


Mark the correct alternative in the following question:

\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]


If A and B are two events such that A ≠ Φ, B = Φ, then 


Mark the correct alternative in the following question: 

\[\text{ If A and B are two independent events such that}  P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]

 

 


Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is


The probability that in a year of 22nd century chosen at random, there will be 53 Sunday, is ______.


From a set of 100 cards numbered 1 to 100, one card is drawn at random. The probability that the number obtained on the card is divisible by 6 or 8 but not by 24 is 


Mother, father and son line up at random for a family photo. If A and B are two events given by
A = Son on one end, B = Father in the middle, find P(B / A).


There are two boxes I and II. Box I contains 3 red and 6 Black balls. Box II contains 5 red and black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is ' a find the value of n 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×