Advertisements
Advertisements
प्रश्न
Prove that in throwing a pair of dice, the occurrence of the number 4 on the first die is independent of the occurrence of 5 on the second die.
उत्तर
\[\text{ Total number of events } = 36\]
\[P\left( 4 \text{ on first die } \right) = P\left( A \right) = \frac{6}{36} = \frac{1}{6}\]
\[P\left( 5 \text{ on second die } \right) = P\left( B \right) = \frac{6}{36} = \frac{1}{6}\]
\[P\left( A \cap B \right) = \frac{1}{36}\]
\[P\left( A \cap B \right) = P\left( A \right)P\left( B \right)\]
\[\text{ Thus, A and B are independent events } .\]
APPEARS IN
संबंधित प्रश्न
An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.
A coin is tossed three times, if head occurs on first two tosses, find the probability of getting head on third toss.
Compute P (A/B), if P (B) = 0.5 and P (A ∩ B) = 0.32
A bag contains 25 tickets, numbered from 1 to 25. A ticket is drawn and then another ticket is drawn without replacement. Find the probability that both tickets will show even numbers.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that both are kings .
If A and B are events such that P (A) = 0.6, P (B) = 0.3 and P (A ∩ B) = 0.2, find P (A/B) and P (B/A).
If A and B are two events such that
\[ P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3} \text{ and } P\left( A \cap B \right) = \frac{1}{4}, \text{ then find } P\left( A|B \right), P\left( B|A \right), P\left( \overline{ A }|B \right) \text{ and } P\left( \overline{ A }|\overline{ B } \right) .\]
Two coins are tossed once. Find P (A/B) in each of the following:
A = No tail appears, B = No head appears.
A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?
Assume that each born child is equally likely to be a boy or a girl. If a family has two children, then what is the constitutional probability that both are girls? Given that
(i) the youngest is a girl (b) at least one is a girl.
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the first throw results in head, B = the last throw results in tail.
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A
A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.
The odds against a certain event are 5 to 2 and the odds in favour of another event, independent to the former are 6 to 5. Find the probability that (i) at least one of the events will occur, and (ii) none of the events will occur.
A bag contains 4 white balls and 2 black balls. Another contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that
(i) both are white
(ii) both are black
(iii) one is white and one is black
Three cards are drawn with replacement from a well shuffled pack of 52 cards. Find the probability that the cards are a king, a queen and a jack.
The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.
Fatima and John appear in an interview for two vacancies for the same post. The probability of Fatima's selection is \[\frac{1}{7}\] and that of John's selection is \[\frac{1}{5}\] What is the probability that
(i) both of them will be selected?
(ii) only one of them will be selected?
(iii) none of them will be selected?
The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?
A factory has two machines A and B. Past records show that the machine A produced 60% of the items of output and machine B produced 40% of the items. Further 2% of the items produced by machine A were defective and 1% produced by machine B were defective. If an item is drawn at random, what is the probability that it is defective?
When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.
Three digit numbers are formed with the digits 0, 2, 4, 6 and 8. Write the probability of forming a three digit number with the same digits.
If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, find P (A ∪ B).
If A, B and C are independent events such that P(A) = P(B) = P(C) = p, then find the probability of occurrence of at least two of A, B and C.
If A and B are independent events, then write expression for P(exactly one of A, B occurs).
If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of Aand B occurs) = \[\frac{5}{9}\], then find the value of p.
A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is
Three faces of an ordinary dice are yellow, two faces are red and one face is blue. The dice is rolled 3 times. The probability that yellow red and blue face appear in the first second and third throws respectively, is
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then, the probability chosen to be white is
Choose the correct alternative in the following question:
\[\text{ If} P\left( A \right) = \frac{3}{10}, P\left( B \right) = \frac{2}{5} \text{ and } P\left( A \cup B \right) = \frac{3}{5}, \text{ then} P\left( A|B \right) + P\left( B|A \right) \text{ equals } \]
Choose the correct alternative in the following question:
\[\text{ If } P\left( A \right) = \frac{2}{5}, P\left( B \right) = \frac{3}{10} \text{ and } P\left( A \cap B \right) = \frac{1}{5}, \text{ then } , P\left( \overline { A }|\overline{ B } \right) P\left( \overline{ B }|\overline{ A } \right) \text{ is equal to } \]
Choose the correct alternative in the following question: \[\text{ Let } P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13} . \text{ Then } , P\left( \overline{ A }|B \right) = \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that } P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3}, P\left( A|B \right) = \frac{1}{4}, \text{ then } P\left( A \cap B \right) \text{ equals} \]
If A and B are two events such that A ≠ Φ, B = Φ, then
Mark the correct alternative in the following question:
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is
There are two boxes I and II. Box I contains 3 red and 6 Black balls. Box II contains 5 red and black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is ' a find the value of n
Out of 8 outstanding students of a school, in which there are 3 boys and 5 girls, a team of 4 students is to be selected for a quiz competition. Find the probability that 2 boys and 2 girls are selected.