मराठी

A Coin is Tossed Thrice and All the Eight Outcomes Are Assumed Equally Likely. in Which of the Following Cases Are the Following Events a and B Are Independent? - Mathematics

Advertisements
Advertisements

प्रश्न

A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the first throw results in head, B = the last throw results in tail.

बेरीज

उत्तर

\[S = \left[ \left( H H H \right) \left( H H T \right) \left( H T H \right) \left( H T T \right) \left( T H H \right) \left( T H T \right) \left( T T H \right) \left( T T T \right) \right]\]
\[P\left( A \right) = \frac{4}{8} = \frac{1}{2}\]
\[P\left( B \right) = \frac{4}{8} = \frac{1}{2}\]
\[\text{ Now } , \]
\[P\left( A \cap B \right) = \frac{2}{8} = \frac{1}{4}\]
\[ P\left( A \cap B \right) = P\left( A \right)P\left( B \right)\]
\[\text{ Thus, A and B are independent events. } \]

shaalaa.com
Probability Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 31: Probability - Exercise 31.4 [पृष्ठ ५३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 31 Probability
Exercise 31.4 | Q 1.1 | पृष्ठ ५३

संबंधित प्रश्‍न

In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from this set and tossed five times. If all the five times, the result was heads, find the probability that the selected coin had heads on both the sides.


A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the probability of
(i) 5 successes?
(ii) at least 5 successes?
(iii) at most 5 successes?


A coin is tossed three times. Find P (A/B) in each of the following:

A = At most two tails, B = At least one tail.


Mother, father and son line up at random for a family picture. If A and B are two events given by A = Son on one end, B = Father in the middle, find P (A/B) and P (B/A).


Two numbers are selected at random from integers 1 through 9. If the sum is even, find the probability that both the numbers are odd.


A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?


Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.


A coin is tossed three times. Let the events AB and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A


If A and B be two events such that P (A) = 1/4, P (B) = 1/3 and P (A ∪ B) = 1/2, show that A and B are independent events.


Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`


A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that (i) both balls are red, (ii) first ball is black and second is red, (iii) one of them is black and other is red.

 

Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 p2 .


A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.


A bag contains 3 white, 4 red and 5 black balls. Two balls are drawn one after the other, without replacement. What is the probability that one is white and the other is black?

 

A and B toss a coin alternately till one of them gets a head and wins the game. If A starts the game, find the probability that B will win the game.


Tickets are numbered from 1 to 10. Two tickets are drawn one after the other at random. Find the probability that the number on one of the tickets is a multiple of 5 and on the other a multiple of 4.

 

A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that both of them will be selected ?


Three cards are drawn with replacement from a well shuffled pack of 52 cards. Find the probability that the cards are a king, a queen and a jack.

 

There are three urns A, B, and C. Urn A contains 4 red balls and 3 black balls. urn B contains 5 red balls and 4 black balls. Urn C contains 4 red and 4 black balls. One ball is drawn from each of these urns. What is the probability that 3 balls drawn consists of 2 red balls and a black ball?


A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins.


One bag contains 4 yellow and 5 red balls. Another bag contains 6 yellow and 3 red balls. A ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that ball drawn is yellow.


The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.


Three machines E1E2E3 in a certain factory produce 50%, 25% and 25%, respectively, of the total daily output of electric bulbs. It is known that 4% of the tubes produced one each of the machines Eand E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day's production, then calculate the probability that it is defective.


The probabilities of a student getting I, II and III division in an examination are  \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is

 

India play two matches each with West Indies and Australia. In any match the probabilities of India getting 0,1 and 2 points are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is


Three integers are chosen at random from the first 20 integers. The probability that their product is even is 


Two dice are thrown simultaneously. The probability of getting a pair of aces is


An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 3 \text{ and }  P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( B \cap A \right) \text{ equals } \]


If A and B are two events such that A ≠ Φ, B = Φ, then 


Mark the correct alternative in the following question:A flash light has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, then the probability that both are dead is


Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability of getting exactly one red ball is


Mark the correct alternative in the following question:
If two events are independent, then


Mark the correct alternative in the following question: 

\[\text{ If A and B are such that } P\left( A \cup B \right) = \frac{5}{9} \text{ and } P\left( \overline{A} \cup \overline{B} \right) = \frac{2}{3}, \text{ then } P\left( A \right) + P\left( B \right) = \]


Mark the correct alternative in the following question:
A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number of the die and a spade card is


If two events A and B are such that P (A)

 \[\left( \overline{ A } \right)\] = 0.3, P (B) = 0.4 and P (A ∩ B) = 0.5, find P \[\left( B/\overline{ A }\cap \overline{ B } \right)\]. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×