Advertisements
Advertisements
प्रश्न
Three machines E1, E2, E3 in a certain factory produce 50%, 25% and 25%, respectively, of the total daily output of electric bulbs. It is known that 4% of the tubes produced one each of the machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day's production, then calculate the probability that it is defective.
उत्तर
Let A be the event that the tube picked is defective.
\[\text{ We have } , \]
\[P\left( E_1 \right) = 50 % = \frac{50}{100} = \frac{1}{2}, P\left( E_2 \right) = 25 % = \frac{25}{100} = \frac{1}{4}, P\left( E_3 \right) = 25 % = \frac{25}{100} = \frac{1}{4}, \]
\[P\left( A| E_1 \right) = 4 % = \frac{4}{100} = \frac{1}{25}, P\left( A| E_2 \right) = 4 % = \frac{4}{100} = \frac{1}{25} and P\left( A| E_3 \right) = 5 % = \frac{5}{100} = \frac{1}{20}\]
\[\text{ Now } , \]
\[P\left( A \right) = P\left( E_1 \right) \times P\left( A| E_1 \right) + P\left( E_2 \right) \times P\left( A| E_2 \right) + P\left( E_3 \right) \times P\left( A| E_3 \right)\]
\[ = \frac{1}{2} \times \frac{1}{25} + \frac{1}{4} \times \frac{1}{25} + \frac{1}{4} \times \frac{1}{20}\]
\[ = \frac{1}{50} + \frac{1}{100} + \frac{1}{80}\]
\[ = \frac{8 + 4 + 5}{400}\]
\[ = \frac{17}{400}\]
So, the probability that the picked tube is defective is
APPEARS IN
संबंधित प्रश्न
A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B, If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.
A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the probability of
(i) 5 successes?
(ii) at least 5 successes?
(iii) at most 5 successes?
Given that the two numbers appearing on throwing two dice are different. Find the probability of the event 'the sum of numbers on the dice is 4'.
A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.
Compute P (A/B), if P (B) = 0.5 and P (A ∩ B) = 0.32
A couple has two children. Find the probability that both the children are (i) males, if it is known that at least one of the children is male. (ii) females, if it is known that the elder child is a female.
Find the chance of drawing 2 white balls in succession from a bag containing 5 red and 7 white balls, the ball first drawn not being replaced.
From a deck of cards, three cards are drawn on by one without replacement. Find the probability that each time it is a card of spade.
If A and B are two events such that \[ P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13}, \text{ then find } P\left( \overline{ A }|B \right) . \]
A coin is tossed three times. Find P (A/B) in each of the following:
A = At most two tails, B = At least one tail.
Two dice are thrown. Find the probability that the numbers appeared has the sum 8, if it is known that the second die always exhibits 4.
The probability that a student selected at random from a class will pass in Mathematics is `4/5`, and the probability that he/she passes in Mathematics and Computer Science is `1/2`. What is the probability that he/she will pass in Computer Science if it is known that he/she has passed in Mathematics?
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the number of heads is odd, B = the number of tails is odd.
If A and B are two independent events such that P (A ∪ B) = 0.60 and P (A) = 0.2, find P(B).
A bag contains 3 red and 2 black balls. One ball is drawn from it at random. Its colour is noted and then it is put back in the bag. A second draw is made and the same procedure is repeated. Find the probability of drawing (i) two red balls, (ii) two black balls, (iii) first red and second black ball.
An article manufactured by a company consists of two parts X and Y. In the process of manufacture of the part X, 9 out of 100 parts may be defective. Similarly, 5 out of 100 are likely to be defective in the manufacture of part Y. Calculate the probability that the assembled product will not be defective.
The odds against a certain event are 5 to 2 and the odds in favour of another event, independent to the former are 6 to 5. Find the probability that (i) at least one of the events will occur, and (ii) none of the events will occur.
A bag contains 3 white, 4 red and 5 black balls. Two balls are drawn one after the other, without replacement. What is the probability that one is white and the other is black?
Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that none of them will be selected?
A, B, and C are independent witness of an event which is known to have occurred. Aspeaks the truth three times out of four, B four times out of five and C five times out of six. What is the probability that the occurrence will be reported truthfully by majority of three witnesses?
An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the sum of the numbers obtained is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered 2, 3, 4, ..., 12 is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8?
A four digit number is formed using the digits 1, 2, 3, 5 with no repetitions. Write the probability that the number is divisible by 5.
An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.
If A, B, C are mutually exclusive and exhaustive events associated to a random experiment, then write the value of P (A) + P (B) + P (C).
If A and B are independent events, then write expression for P(exactly one of A, B occurs).
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
If A and B are two events, then P (`overline A` ∩ B) =
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that } P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3}, P\left( A|B \right) = \frac{1}{4}, \text{ then } P\left( A \cap B \right) \text{ equals} \]
Mark the correct alternative in the following question:
\[\text{ Let A and B are two events such that } P\left( A \right) = \frac{3}{8}, P\left( B \right) = \frac{5}{8} \text{ and } P\left( A \cup B \right) = \frac{3}{4} . \text{ Then } P\left( A|B \right) \times P\left( A \cap B \right) \text{ is equals to } \]
If A and B are two events such that A ≠ Φ, B = Φ, then
Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability that exactly two of the three balls were red, the first ball being red, is
Mark the correct alternative in the following question:
In a college 30% students fail in Physics, 25% fail in Mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in Physics if she failed in Mathematics is
Mark the correct alternative in the following question:
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is
Mark the correct alternative in the following question:
\[\text{ Let A and B be two events such that P } \left( A \right) = 0 . 6, P\left( B \right) = 0 . 2, P\left( A|B \right) = 0 . 5 . \text{ Then } P\left( \overline{A}|\overline{B} \right) \text{ equals } \]
A coin is tossed 5 times. Find the probability of getting (i) at least 4 heads, and (ii) at most 4 heads.
A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts the game first.