Advertisements
Advertisements
प्रश्न
A coin is tossed 5 times. Find the probability of getting (i) at least 4 heads, and (ii) at most 4 heads.
उत्तर
Total number of the probability of tossing a coin 5 times is 32
(i) Probability of getting at least 4 heads
P(X=4) + P(X=5)
`""^5C_4 (1/2)^1 (1/2)^4 + ""^5C_5 (1/2)^0 (1/5)^5`
= `""^5C_4 (1/2)^5 + ""^5C_5 (1/2)^5`
= `6/32 = 3/16`
(ii) Probability of getting at most 4 head
P(X=1) + P(X=2) + P(X=3) + P(X=4)
`""^5C_1 (1/2)^5 + ""^5C_2 (1/2)^5 + ""^5C_3 (1/2)^5 + ""^5C_4 (1/2)^5`
= `(1/2)^5` [5+ 10 + 10 + 5]
= `(15)/(16)`
संबंधित प्रश्न
An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.
Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?
Assume that each child born is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girl, (ii) at least one is a girl?
A bag contains 25 tickets, numbered from 1 to 25. A ticket is drawn and then another ticket is drawn without replacement. Find the probability that both tickets will show even numbers.
A bag contains 20 tickets, numbered from 1 to 20. Two tickets are drawn without replacement. What is the probability that the first ticket has an even number and the second an odd number.
If A and B are two events such that
\[ P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3} \text{ and } P\left( A \cap B \right) = \frac{1}{4}, \text{ then find } P\left( A|B \right), P\left( B|A \right), P\left( \overline{ A }|B \right) \text{ and } P\left( \overline{ A }|\overline{ B } \right) .\]
A pair of dice is thrown. Find the probability of getting 7 as the sum if it is known that the second die always exhibits a prime number.
A die is rolled. If the outcome is an odd number, what is the probability that it is prime?
Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. B and C .
If A and B be two events such that P (A) = 1/4, P (B) = 1/3 and P (A ∪ B) = 1/2, show that A and B are independent events.
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∪ B).
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (B/A) .
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 blue balls.
A bag contains 4 red and 5 black balls, a second bag contains 3 red and 7 black balls. One ball is drawn at random from each bag, find the probability that the (i) balls are of different colours (ii) balls are of the same colour.
The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.
There are three urns A, B, and C. Urn A contains 4 red balls and 3 black balls. urn B contains 5 red balls and 4 black balls. Urn C contains 4 red and 4 black balls. One ball is drawn from each of these urns. What is the probability that 3 balls drawn consists of 2 red balls and a black ball?
X is taking up subjects - Mathematics, Physics and Chemistry in the examination. His probabilities of getting grade A in these subjects are 0.2, 0.3 and 0.5 respectively. Find the probability that he gets
(i) Grade A in all subjects
(ii) Grade A in no subject
(iii) Grade A in two subjects.
Three persons A, B, C throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.
Write the probability that a number selected at random from the set of first 100 natural numbers is a cube.
If A, B and C are independent events such that P(A) = P(B) = P(C) = p, then find the probability of occurrence of at least two of A, B and C.
A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is
Choose the correct alternative in the following question:
If A and B are two events associated to a random experiment such that \[P\left( A \cap B \right) = \frac{7}{10} \text{ and } P\left( B \right) = \frac{17}{20}\] , then P(A|B) =
Mark the correct alternative in the following question:A flash light has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, then the probability that both are dead is
Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is
Mark the correct alternative in the following question:
Two dice are thrown. If it is known that the sum of the numbers on the dice was less than 6, then the probability of getting a sum 3, is
There are two boxes I and II. Box I contains 3 red and 6 Black balls. Box II contains 5 red and black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is ' a find the value of n