Advertisements
Advertisements
Question
Three machines E1, E2, E3 in a certain factory produce 50%, 25% and 25%, respectively, of the total daily output of electric bulbs. It is known that 4% of the tubes produced one each of the machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day's production, then calculate the probability that it is defective.
Solution
Let A be the event that the tube picked is defective.
\[\text{ We have } , \]
\[P\left( E_1 \right) = 50 % = \frac{50}{100} = \frac{1}{2}, P\left( E_2 \right) = 25 % = \frac{25}{100} = \frac{1}{4}, P\left( E_3 \right) = 25 % = \frac{25}{100} = \frac{1}{4}, \]
\[P\left( A| E_1 \right) = 4 % = \frac{4}{100} = \frac{1}{25}, P\left( A| E_2 \right) = 4 % = \frac{4}{100} = \frac{1}{25} and P\left( A| E_3 \right) = 5 % = \frac{5}{100} = \frac{1}{20}\]
\[\text{ Now } , \]
\[P\left( A \right) = P\left( E_1 \right) \times P\left( A| E_1 \right) + P\left( E_2 \right) \times P\left( A| E_2 \right) + P\left( E_3 \right) \times P\left( A| E_3 \right)\]
\[ = \frac{1}{2} \times \frac{1}{25} + \frac{1}{4} \times \frac{1}{25} + \frac{1}{4} \times \frac{1}{20}\]
\[ = \frac{1}{50} + \frac{1}{100} + \frac{1}{80}\]
\[ = \frac{8 + 4 + 5}{400}\]
\[ = \frac{17}{400}\]
So, the probability that the picked tube is defective is
APPEARS IN
RELATED QUESTIONS
A coin is tossed three times, if head occurs on first two tosses, find the probability of getting head on third toss.
A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.
If A and B are two events such that P (A) = \[\frac{1}{3},\] P (B) = \[\frac{1}{5}\] and P (A ∪ B) = \[\frac{11}{30}\] , find P (A/B) and P (B/A).
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a king and the second is an ace.
Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?
If A and B are events such that P (A) = 0.6, P (B) = 0.3 and P (A ∩ B) = 0.2, find P (A/B) and P (B/A).
Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.
Assume that each born child is equally likely to be a boy or a girl. If a family has two children, then what is the constitutional probability that both are girls? Given that
(i) the youngest is a girl (b) at least one is a girl.
Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A/B) .
If A and B are two independent events such that P (A ∪ B) = 0.60 and P (A) = 0.2, find P(B).
Given the probability that A can solve a problem is 2/3 and the probability that B can solve the same problem is 3/5. Find the probability that none of the two will be able to solve the problem.
Three cards are drawn with replacement from a well shuffled pack of cards. Find the probability that the cards drawn are king, queen and jack.
A die is thrown thrice. Find the probability of getting an odd number at least once.
Two dice are thrown together and the total score is noted. The event E, F and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2
A speaks truth in 75% and B in 80% of the cases. In what percentage of cases are they likely to contradict each other in narrating the same incident?
Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?
A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?
The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.
A bag contains 8 marbles of which 3 are blue and 5 are red. One marble is drawn at random, its colour is noted and the marble is replaced in the bag. A marble is again drawn from the bag and its colour is noted. Find the probability that the marble will be
(i) blue followed by red.
(ii) blue and red in any order.
(iii) of the same colour.
An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting
(i) 2 red balls
(ii) 2 blue balls
(iii) One red and one blue ball.
A card is drawn from a well-shuffled deck of 52 cards. The outcome is noted, the card is replaced and the deck reshuffled. Another card is then drawn from the deck.
(i) What is the probability that both the cards are of the same suit?
(ii) What is the probability that the first card is an ace and the second card is a red queen?
A bag A contains 5 white and 6 black balls. Another bag B contains 4 white and 3 black balls. A ball is transferred from bag A to the bag B and then a ball is taken out of the second bag. Find the probability of this ball being black.
A purse contains 2 silver and 4 copper coins. A second purse contains 4 silver and 3 copper coins. If a coin is pulled at random from one of the two purses, what is the probability that it is a silver coin?
One bag contains 4 yellow and 5 red balls. Another bag contains 6 yellow and 3 red balls. A ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that ball drawn is yellow.
The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?
Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.
A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is
Mark the correct alternative in the following question:
If two events are independent, then
Mark the correct alternative in the following question:
A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number of the die and a spade card is
A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.
Refer to Question 6. Calculate the probability that the defective tube was produced on machine E1.