मराठी

Mark the Correct Alternative in the Following Question: Let a and B Are Two Events Such that P ( a ) = 3 8 , P ( B ) = 5 8 and P ( a ∪ B ) = 3 4 . Then P ( a | B ) × P ( a ∩ B ) is Equals to - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in the following question:

\[\text{ Let A and B are two events such that } P\left( A \right) = \frac{3}{8}, P\left( B \right) = \frac{5}{8} \text{ and } P\left( A \cup B \right) = \frac{3}{4} . \text{ Then } P\left( A|B \right) \times P\left( A \cap B \right) \text{ is equals to } \]

पर्याय

  • \[ \frac{2}{5}\]

  • \[ \frac{3}{8}\]

  • \[  \frac{3}{20}\]

  • \[ \frac{6}{25}\]

MCQ

उत्तर

\[\text{ We have, } \]
\[P\left( A \right) = \frac{3}{8}, P\left( B \right) = \frac{5}{8} \text{ and } P\left( A \cup B \right) = \frac{3}{4}\]
\[\text{ As } , P\left( A \cup B \right) = \frac{3}{4}\]
\[ \Rightarrow P\left( A \right) + P\left( B \right) - P\left( A \cap B \right) = \frac{3}{4}\]
\[ \Rightarrow \frac{3}{8} + \frac{5}{8} - P\left( A \cap B \right) = \frac{3}{4}\]
\[ \Rightarrow \frac{8}{8} - P\left( A \cap B \right) = \frac{3}{4}\]
\[ \Rightarrow 1 - P\left( A \cap B \right) = \frac{3}{4}\]
\[ \Rightarrow P\left( A \cap B \right) = 1 - \frac{3}{4}\]
\[ \Rightarrow P\left( A \cap B \right) = \frac{1}{4}\]
\[\text{ Also } , \]
\[P\left(\overline{ A } \cap B \right) = P\left( B \right) - P\left( A \cap B \right)\]
\[ = \frac{5}{8} - \frac{1}{4}\]
\[ = \frac{5 - 2}{8}\]
\[ = \frac{3}{8}\]
\[\text{ Now} , \]
\[P\left( \overline{ A }|B \right) \times P\left( A | B \right) = \frac{P\left( A \cap B \right)}{P\left( B \right)} \times \frac{P\left( \overline{ A } \cap B \right)}{P\left( B \right)}\]
\[ = \frac{\left( \frac{1}{4} \right)}{\left( \frac{5}{8} \right)} \times \frac{\left( \frac{3}{8} \right)}{\left( \frac{5}{8} \right)}\]
\[ = \frac{8}{4 \times 5} \times \frac{3 \times 8}{5 \times 8}\]
\[ = \frac{2}{5} \times \frac{3}{5}\]
\[ = \frac{6}{25}\]

shaalaa.com
Probability Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 31: Probability - MCQ [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 31 Probability
MCQ | Q 34 | पृष्ठ १०६

संबंधित प्रश्‍न

An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.


Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?


If P (A) = 0.4, P (B) = 0.3 and P (B/A) = 0.5, find P (A ∩ B) and P (A/B).

 

A card is drawn from a well-shuffled deck of 52 cards and then a second card is drawn. Find the probability that the first card is a heart and the second card is a diamond if the first card is not replaced.


Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?


 If P (A) = \[\frac{7}{13}\], P (B) = \[\frac{9}{13}\]  and P (A ∩ B) = \[\frac{4}{13}\], find P (A/B).

 
 
 
 

If P (A) = \[\frac{6}{11},\]  P (B) = \[\frac{5}{11}\]  and P (A ∪ B) = \[\frac{7}{11},\]  find

(i) P (A ∩ B)
(ii) P (A/B)
(iii) P (B/A)

The probability that a student selected at random from a class will pass in Mathematics is `4/5`, and the probability that he/she passes in Mathematics and Computer Science is `1/2`.  What is the probability that he/she will pass in Computer Science if it is known that he/she has passed in Mathematics?


A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?

A = the number of heads is odd, B = the number of tails is odd.


A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?

A = the number of heads is two, B = the last throw results in head.


A die is tossed twice. Find the probability of getting a number greater than 3 on each toss.

 

An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.  


Two dice are thrown together and the total score is noted. The event EF and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.   


Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are:  `1 - (1 - p_1 )(1 -p_2 ) `


Kamal and Monica appeared for an interview for two vacancies. The probability of Kamal's selection is 1/3 and that of Monika's selection is 1/5. Find the probability that
(i) both of them will be selected
(ii) none of them will be selected
(iii) at least one of them will be selected
(iv) only one of them will be selected.


A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.

 

Arun and Tarun appeared for an interview for two vacancies. The probability of Arun's selection is 1/4 and that to Tarun's rejection is 2/3. Find the probability that at least one of them will be selected.


In a family, the husband tells a lie in 30% cases and the wife in 35% cases. Find the probability that both contradict each other on the same fact.

 

X is taking up subjects - Mathematics, Physics and Chemistry in the examination. His probabilities of getting grade A in these subjects are 0.2, 0.3 and 0.5 respectively. Find the probability that he gets
(i) Grade A in all subjects
(ii) Grade A in no subject
(iii) Grade A in two subjects.


Fatima and John appear in an interview for two vacancies for the same post. The probability of Fatima's selection is \[\frac{1}{7}\]  and that of John's selection is \[\frac{1}{5}\] What is the probability that
(i) both of them will be selected?
(ii) only one of them will be selected?
(iii) none of them will be selected?


A card is drawn from a well-shuffled deck of 52 cards. The outcome is noted, the card is replaced and the deck reshuffled. Another card is then drawn from the deck.
(i) What is the probability that both the cards are of the same suit?
(ii) What is the probability that the first card is an ace and the second card is a red queen?


In a hockey match, both teams A and B scored same number of goals upto the end of the game, so to decide the winner, the refree asked both the captains to throw a die alternately and decide that the team, whose captain gets a first six, will be declared the winner. If the captain of team A was asked to start, find their respective probabilities of winning the match and state whether the decision of the refree was fair or not.


6 boys and 6 girls sit in a row at random. Find the probability that all the girls sit together.


An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.


A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is


The probability that a leap year will have 53 Fridays or 53 Saturdays is


Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floors is


Mark the correct alternative in the following question:

If A and B are two events such that P(A) = \[\frac{4}{5}\] , and \[P\left( A \cap B \right) = \frac{7}{10}\] , then P(B|A) =


Choose the correct alternative in the following question:

\[\text{ If}  P\left( A \right) = \frac{3}{10}, P\left( B \right) = \frac{2}{5} \text{ and } P\left( A \cup B \right) = \frac{3}{5}, \text{ then} P\left( A|B \right) + P\left( B|A \right) \text{ equals } \]


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 3 \text{ and }  P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( B \cap A \right) \text{ equals } \]


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that} P\left( A \right) \neq 0 \text{ and }  P\left( B \right) \neq 1,\text{ then } P\left( \overline{ A }|\overline{ B }\right) = \]


Mark the correct alternative in the following question:
If two events are independent, then


Mark the correct alternative in the following question: 

\[\text{ If A and B are such that } P\left( A \cup B \right) = \frac{5}{9} \text{ and } P\left( \overline{A} \cup \overline{B} \right) = \frac{2}{3}, \text{ then } P\left( A \right) + P\left( B \right) = \]


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A|B \right) = p, P\left( A \right) = p, P\left( B \right) = \frac{1}{3} \text{ and } P\left( A \cup B \right) = \frac{5}{9}, \text{ then} p = \]


The probability that in a year of 22nd century chosen at random, there will be 53 Sunday, is ______.


A coin is tossed 5 times. Find the probability of getting (i) at least 4 heads, and (ii) at most 4  heads. 


Refer to Question 6. Calculate the probability that the defective tube was produced on machine E1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×