मराठी

Kamal and Monica Appeared for an Interview for Two Vacancies. the Probability of Kamal'S Selection is 1/3 and that of Monika'S Selection is 1/5. Find Probability That(I) Both of Them Will Be Selected - Mathematics

Advertisements
Advertisements

प्रश्न

Kamal and Monica appeared for an interview for two vacancies. The probability of Kamal's selection is 1/3 and that of Monika's selection is 1/5. Find the probability that
(i) both of them will be selected
(ii) none of them will be selected
(iii) at least one of them will be selected
(iv) only one of them will be selected.

उत्तर

\[P\left( \text{ Kamal gets selected } \right) = P\left( A \right) = \frac{1}{3}\]
\[P\left( \text{ Monica gets selected } \right) = P\left( B \right) = \frac{1}{5}\]
\[\left( i \right) P\left( \text{ both get selected } \right) = P\left( A \right) \times P\left( B \right)\]
\[ = \frac{1}{3} \times \frac{1}{5}\]
\[ = \frac{1}{15}\]
\[\left( ii \right) P\left( \text{ none of them get selected }\right) = P\left( \bar{A} \right) \times P\left( \bar{B} \right)\]
\[ = \left[ 1 - P\left( A \right) \right]\left[ 1 - P\left( B \right) \right]\]
\[ = \left( 1 - \frac{1}{3} \right)\left( 1 - \frac{1}{5} \right)\]
\[ = \frac{2}{3} \times \frac{4}{5}\]
\[ = \frac{8}{15}\]
\[\left( iii \right) P\left( \text{ atleast one of them gets selected } \right) = P\left( A \cup B \right)\]
\[ = P\left( A \right) + P\left( B \right) - P\left( A \cap B \right)\]
\[ = P\left( A \right) + P\left( B \right) - P\left( A \right) \times P\left( B \right)\]
\[ = \frac{1}{3} + \frac{1}{5} - \frac{1}{3} \times \frac{1}{5}\]
\[ = \frac{1}{3} + \frac{1}{5} - \frac{1}{15}\]
\[ = \frac{7}{15}\]
\[\left( iv \right) P\left(  \text{ one of them gets selected } \right) = P\left( \bar{A} \right)P\left( B \right) + P\left( \bar{B} \right)P\left( A \right)\]
\[ = P\left( B \right)\left[ 1 - P\left( A \right) \right] + P\left( A \right)\left[ 1 - P\left( B \right) \right]\]
\[ = \frac{1}{5}\left( 1 - \frac{1}{3} \right) + \frac{1}{3}\left( 1 - \frac{1}{5} \right)\]
\[ = \frac{2}{15} + \frac{4}{15}\]
\[ = \frac{6}{15} = \frac{2}{5}\]

shaalaa.com
Probability Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 31: Probability - Exercise 31.5 [पृष्ठ ६८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 31 Probability
Exercise 31.5 | Q 6 | पृष्ठ ६८

संबंधित प्रश्‍न

A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B, If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.


An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.


If A and B are two events such that P (A) = \[\frac{1}{3},\] P (B) = \[\frac{1}{5}\] and P (A ∪ B) = \[\frac{11}{30}\] , find P (A/B) and P (B/A).

 
 
 

A couple has two children. Find the probability that both the children are (i) males, if it is known that at least one of the children is male. (ii) females, if it is known that the elder child is a female.


Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a heart and second is red.


An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?


A bag contains 4 white, 7 black and 5 red balls. Three balls are drawn one after the other without replacement. Find the probability that the balls drawn are white, black and red respectively.


 If P (A) = \[\frac{7}{13}\], P (B) = \[\frac{9}{13}\]  and P (A ∩ B) = \[\frac{4}{13}\], find P (A/B).

 
 
 
 

If A and B are events such that P (A) = 0.6, P (B) = 0.3 and P (A ∩ B) = 0.2, find P (A/B) and P (B/A).


If P (A) = 0.4, P (B) = 0.8, P (B/A) = 0.6. Find P (A/B) and P (A ∪ B).

 

A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∩ B).


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A/B) .


If P (not B) = 0.65, P (A ∪ B) = 0.85, and A and B are independent events, then find P (A).

 

An anti-aircraft gun can take a maximum of 4 shots at an enemy plane moving away from it. The probabilities of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1 respectively. What is the probability that the gun hits the plane?


The odds against a certain event are 5 to 2 and the odds in favour of another event, independent to the former are 6 to 5. Find the probability that (i) at least one of the events will occur, and (ii) none of the events will occur.


A and B toss a coin alternately till one of them gets a head and wins the game. If A starts the game, find the probability that B will win the game.


Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?

 

A can hit a target 3 times in 6 shots, B : 2 times in 6 shots and C : 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit?

 

There are 3 red and 5 black balls in bag 'A'; and 2 red and 3 black balls in bag 'B'. One ball is drawn from bag 'A' and two from bag 'B'. Find the probability that out of the 3 balls drawn one is red and 2 are black.

 

One bag contains 4 yellow and 5 red balls. Another bag contains 6 yellow and 3 red balls. A ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that ball drawn is yellow.


The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?


An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the sum of the numbers obtained is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered 2, 3, 4, ..., 12 is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8?


A factory has two machines A and B. Past records show that the machine A produced 60% of the items of output and machine B produced 40% of the items. Further 2% of the items produced by machine A were defective and 1% produced by machine B were defective. If an item is drawn at random, what is the probability that it is defective?

 

The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.


If A and B are two independent events, then write P (A ∩ \[B\] ) in terms of P (A) and P (B).

 
 

Three integers are chosen at random from the first 20 integers. The probability that their product is even is 


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floors is


A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is


Choose the correct alternative in the following question:
Associated to a random experiment two events A and B are such that

\[P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ an d }  P\left( A \cup B \right) = \frac{4}{5}\] . The value of P(A) is

Choose the correct alternative in the following question:

\[\text{ If}  P\left( A \right) = \frac{3}{10}, P\left( B \right) = \frac{2}{5} \text{ and } P\left( A \cup B \right) = \frac{3}{5}, \text{ then} P\left( A|B \right) + P\left( B|A \right) \text{ equals } \]


Mark the correct alternative in the following question:

\[ \text{ If }  P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and }  P\left( \overline{A \cup B }\right) = \frac{4}{5}, \text{ then }  P\left( \overline{ A } \cup B \right) + P\left( A \cup B \right) = \]


Mark the correct alternative in the following question:

\[\text{ If the events A and B are independent, then }  P\left( A \cap B \right) \text{ is equal to } \]


Mark the correct alternative in the following question:A flash light has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, then the probability that both are dead is


Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability of getting exactly one red ball is


Mark the correct alternative in the following question:
Two dice are thrown. If it is known that the sum of the numbers on the dice was less than 6, then the probability of getting a sum 3, is


A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts the game first.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×