मराठी

A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts the game first. - Mathematics

Advertisements
Advertisements

प्रश्न

A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts the game first.

बेरीज

उत्तर

Let S denote the success (getting a '6') and F denote the failure (not getting a '6').

Thus, P(S) = `1/6` = p, P(F) = `5/6` = q

P(A wins in first throw) = P(S) = p

P(A wins in third throw) = P(FFS) = qqp

P(A wins in fifth throw) = P(FFFFS) = qqqqp

So, P(A wins) = p + q2p + q4p + ..... = p(1 + q2 + q4 + ....)

= `p/(1 - q^2)`

= `(1/6)/(1 - 25/36)`

= `6/11`

P(B wins) = 1 – P(A wins)

= `1 - 6/11`

= `5/11`

So, P(A wins) = `6/11` and P(B wins) = `5/11`.

shaalaa.com
Probability Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Outside Delhi Set 1

संबंधित प्रश्‍न

An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.


A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the probability of
(i) 5 successes?
(ii) at least 5 successes?
(iii) at most 5 successes?


Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls. Two balls are transferred at random from bag A to bag B and then a ball is drawn from bag B at random. If the ball drawn from bag B is found to be red find the probability that two red balls were transferred from A to B.


A bag contains 20 tickets, numbered from 1 to 20. Two tickets are drawn without replacement. What is the probability that the first ticket has an even number and the second an odd number.


If A and B are two events such that\[ P\left( A \right) = \frac{6}{11}, P\left( B \right) = \frac{5}{11} \text{ and } P\left( A \cup B \right) = \frac{7}{11}, \text{ then find } P\left( A \cap B \right), P\left( A|B \right) \text { and } P\left( B|A \right) . \]


If P (A) = \[\frac{6}{11},\]  P (B) = \[\frac{5}{11}\]  and P (A ∪ B) = \[\frac{7}{11},\]  find

(i) P (A ∩ B)
(ii) P (A/B)
(iii) P (B/A)

A die is thrown three times. Find P (A/B) and P (B/A), if
A = 4 appears on the third toss, B = 6 and 5 appear respectively on first two tosses.


A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?


Two dice are thrown and it is known that the first die shows a 6. Find the probability that the sum of the numbers showing on two dice is 7.


An anti-aircraft gun can take a maximum of 4 shots at an enemy plane moving away from it. The probabilities of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1 respectively. What is the probability that the gun hits the plane?


A die is thrown thrice. Find the probability of getting an odd number at least once.

 

Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2  


Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?

 

A purse contains 2 silver and 4 copper coins. A second purse contains 4 silver and 3 copper coins. If a coin is pulled at random from one of the two purses, what is the probability that it is a silver coin?


A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.


When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.

 

A ordinary cube has four plane faces, one face marked 2 and another face marked 3, find the probability of getting a total of 7 in 5 throws.


6 boys and 6 girls sit in a row at random. Find the probability that all the girls sit together.


If A and B are two independent events such that P (A) = 0.3 and P (A ∪ \[B\]) = 0.8. Find P (B).

 
 

Write the probability that a number selected at random from the set of first 100 natural numbers is a cube.

 

If AB and C are independent events such that P(A) = P(B) = P(C) = p, then find the probability of occurrence of at least two of AB and C.


A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is


A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =


Choose the correct alternative in the following question: \[\text{ Let }  P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13} . \text{ Then } , P\left( \overline{ A }|B \right) = \]


Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is


Mark the correct alternative in the following question: 

\[\text{ If A and B are such that } P\left( A \cup B \right) = \frac{5}{9} \text{ and } P\left( \overline{A} \cup \overline{B} \right) = \frac{2}{3}, \text{ then } P\left( A \right) + P\left( B \right) = \]


Refer to Question 6. Calculate the probability that the defective tube was produced on machine E1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×