मराठी

Let A And B Be Two Independent Events Such that P(A) = P1 And P(B) = P2. Describe in Words the Events Whose Probabilities Are: (Iv) P1 + P2 - 2p1p2 - Mathematics

Advertisements
Advertisements

प्रश्न

Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2  

बेरीज

उत्तर

\[\text{ As } , p_1 + p_2 - 2 p_1 p_2 = \left( p_1 - p_1 p_2 \right) + \left( p_2 - p_1 p_2 \right)\]
\[ = \left[ P\left( A \right) - P\left( A \right) \times P\left( B \right) \right] + \left[ P\left( B \right) - P\left( A \right) \times P\left( B \right) \right]\]
\[\text{ And, A and B are independent events } . \]
\[i . e . P\left( A \right) \times P\left( B \right) = P\left( A \cap B \right)\]
\[ \Rightarrow p_1 + p_2 - 2 p_1 p_2 = \left[ P\left( A \right) - P\left( A \cap B \right) \right] + \left[ P\left( B \right) - P\left( A \cap B \right) \right] = P\left( \text { only } A \right) + P\left( \text { only } B \right)\]
\[\text{ So } , P\left( \text{ only } A \right) + P\left( \text{ only } B \right) = p_1 + p_2 - 2 p_1 p_2 \]
\[\text{ Hence } , p_1 + p_2 - 2 p_1 p_2 = P\left( \text{ Exactly one of A and B occurs } \right)\]

shaalaa.com
Probability Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 31: Probability - Exercise 31.4 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 31 Probability
Exercise 31.4 | Q 25.4 | पृष्ठ ५५

संबंधित प्रश्‍न

If P (A) = 0.4, P (B) = 0.3 and P (B/A) = 0.5, find P (A ∩ B) and P (A/B).

 

Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?


If A and B are two events such that \[ P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13}, \text{ then find } P\left( \overline{ A }|B \right) . \]


If P (A) = \[\frac{6}{11},\]  P (B) = \[\frac{5}{11}\]  and P (A ∪ B) = \[\frac{7}{11},\]  find

(i) P (A ∩ B)
(ii) P (A/B)
(iii) P (B/A)

A coin is tossed three times. Find P (A/B) in each of the following:

A = At least two heads, B = At most two heads


A coin is tossed three times. Find P (A/B) in each of the following:

A = At most two tails, B = At least one tail.


A die is rolled. If the outcome is an odd number, what is the probability that it is prime?

 

Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.


Two dice are thrown and it is known that the first die shows a 6. Find the probability that the sum of the numbers showing on two dice is 7.


In a school there are 1000 students, out of which 430 are girls. It is known that out of 430, 10% of the girls study in class XII. What is the probability that a student chosen randomly studies in class XII given that the chosen student is a girl?


Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent? 

B = the card drawn is a spade, B = the card drawn in an ace.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.


If A and B are two independent events such that P (A ∪ B) = 0.60 and P (A) = 0.2, find P(B).


A die is tossed twice. Find the probability of getting a number greater than 3 on each toss.

 

An unbiased die is tossed twice. Find the probability of getting 4, 5, or 6 on the first toss and 1, 2, 3 or 4 on the second toss.


A die is thrown thrice. Find the probability of getting an odd number at least once.

 

A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that first ball is black and second is red. 


A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.

 

A and B toss a coin alternately till one of them gets a head and wins the game. If A starts the game, find the probability that B will win the game.


A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?

 


A and B take turns in throwing two dice, the first to throw 10 being awarded the prize, show that if A has the first throw, their chance of winning are in the ratio 12 : 11.


A purse contains 2 silver and 4 copper coins. A second purse contains 4 silver and 3 copper coins. If a coin is pulled at random from one of the two purses, what is the probability that it is a silver coin?


A four digit number is formed using the digits 1, 2, 3, 5 with no repetitions. Write the probability that the number is divisible by 5.


Three digit numbers are formed with the digits 0, 2, 4, 6 and 8. Write the probability of forming a three digit number with the same digits.


A ordinary cube has four plane faces, one face marked 2 and another face marked 3, find the probability of getting a total of 7 in 5 throws.


If A and B are two independent events, then write P (A ∩ \[B\] ) in terms of P (A) and P (B).

 
 

If AB and C are independent events such that P(A) = P(B) = P(C) = p, then find the probability of occurrence of at least two of AB and C.


A person writes 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that} P\left( A \right) \neq 0 \text{ and }  P\left( B \right) \neq 1,\text{ then } P\left( \overline{ A }|\overline{ B }\right) = \]


Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability of getting exactly one red ball is


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A|B \right) = p, P\left( A \right) = p, P\left( B \right) = \frac{1}{3} \text{ and } P\left( A \cup B \right) = \frac{5}{9}, \text{ then} p = \]


Mark the correct alternative in the following question:
A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number of the die and a spade card is


An insurance company insured 3000 cyclists, 6000 scooter drivers, and 9000 car drivers. The probability of an accident involving a cyclist, a scooter driver, and a car driver are 0⋅3, 0⋅05 and 0⋅02 respectively. One of the insured persons meets with an accident. What is the probability that he is a cyclist?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×