Advertisements
Advertisements
प्रश्न
India play two matches each with West Indies and Australia. In any match the probabilities of India getting 0,1 and 2 points are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is
पर्याय
0.0875
1/16
0.1125
none of these
उत्तर
\[0 . 0875\]
\[\text{ Here, there are total 5 ways by which India can get at least 7 points } .\]
\[\left( 1 \right) 2 \text{ points } + 2 \text{ points } + 2 \text{ points} + 2 \text{ points } = \left( 0 . 5 \times 0 . 5 \times 0 . 5 \times 0 . 5 \right)\]\[\left( 2 \right) 1 \text{ point }+ 2 \text{ points } + 2 \text{ points } + 2 \text{ points } = \left( 0 . 05 \times 0 . 5 \times 0 . 5 \times 0 . 5 \right)\]
\[\left( 3 \right) 2 \text{ points }+ 1 \text{ point} + 2 \text{ points } + 2 \text{ points } = \left( 0 . 5 \times 0 . 05 \times 0 . 5 \times 0 . 5 \right)\]
\[\left( 4 \right) 2 \text{ points}+ 2 \text{ points} + 1 \text{ point }+ 2 \text{ points} = \left( 0 . 5 \times 0 . 5 \times 0 . 05 \times 0 . 5 \right)\]
\[\left( 5 \right) 2 \text{ points }
+ 2 \text{ points } + 2 \text{ points } + 1 \text{ point } = \left( 0 . 5 \times 0 . 5 \times 0 . 5 \times 0 . 05 \right)\]
\[P\left( \text{ atleast 7 points }\right) = 0 . 5 \times 0 . 5 \times 0 . 5 \times 0 . 5 + 4\left[ 0 . 05 \times 0 . 5 \times 0 . 5 \times 0 . 5 \right]\]
\[ = 0 . 0625 + 4\left( 0 . 00625 \right)\]
\[ = 0 . 0625 + 0 . 025\]
\[ = 0 . 0875\]
APPEARS IN
संबंधित प्रश्न
How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%?
A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B, If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.
From a pack of 52 cards, 4 are drawn one by one without replacement. Find the probability that all are aces(or kings).
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a king and the second is an ace.
A card is drawn from a well-shuffled deck of 52 cards and then a second card is drawn. Find the probability that the first card is a heart and the second card is a diamond if the first card is not replaced.
If A and B are events such that P (A) = 0.6, P (B) = 0.3 and P (A ∩ B) = 0.2, find P (A/B) and P (B/A).
A coin is tossed three times. Find P (A/B) in each of the following:
A = At least two heads, B = At most two heads
A coin is tossed three times. Find P (A/B) in each of the following:
A = At most two tails, B = At least one tail.
Two coins are tossed once. Find P (A/B) in each of the following:
A = No tail appears, B = No head appears.
A pair of dice is thrown. Find the probability of getting 7 as the sum if it is known that the second die always exhibits a prime number.
Two dice are thrown and it is known that the first die shows a 6. Find the probability that the sum of the numbers showing on two dice is 7.
A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).
If A and B are two independent events such that P (`bar A` ∩ B) = 2/15 and P (A ∩`bar B` ) = 1/6, then find P (B).
An article manufactured by a company consists of two parts X and Y. In the process of manufacture of the part X, 9 out of 100 parts may be defective. Similarly, 5 out of 100 are likely to be defective in the manufacture of part Y. Calculate the probability that the assembled product will not be defective.
The probability that A hits a target is 1/3 and the probability that B hits it, is 2/5, What is the probability that the target will be hit, if each one of A and B shoots at the target?
A die is thrown thrice. Find the probability of getting an odd number at least once.
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.
A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.
A bag contains 7 white, 5 black and 4 red balls. Four balls are drawn without replacement. Find the probability that at least three balls are black.
A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins.
A factory has two machines A and B. Past records show that the machine A produced 60% of the items of output and machine B produced 40% of the items. Further 2% of the items produced by machine A were defective and 1% produced by machine B were defective. If an item is drawn at random, what is the probability that it is defective?
One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball is transferred from first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.
When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.
A ordinary cube has four plane faces, one face marked 2 and another face marked 3, find the probability of getting a total of 7 in 5 throws.
An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.
If A and B are two events write the expression for the probability of occurrence of exactly one of two events.
If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of Aand B occurs) = \[\frac{5}{9}\], then find the value of p.
A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is
The probabilities of a student getting I, II and III division in an examination are \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is
Two dice are thrown simultaneously. The probability of getting a pair of aces is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
If A and B are two events, then P (`overline A` ∩ B) =
Choose the correct alternative in the following question:
\[\text{ If } P\left( A \right) = \frac{2}{5}, P\left( B \right) = \frac{3}{10} \text{ and } P\left( A \cap B \right) = \frac{1}{5}, \text{ then } , P\left( \overline { A }|\overline{ B } \right) P\left( \overline{ B }|\overline{ A } \right) \text{ is equal to } \]
Mark the correct alternative in the following question:
\[\text{ If the events A and B are independent, then } P\left( A \cap B \right) \text{ is equal to } \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events such that} P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]
Mark the correct alternative in the following question
Three persons, A, B and C fire a target in turn starting with A. Their probabilities of hitting the target are 0.4, 0.2 and 0.2, respectively. The probability of two hits is
Mark the correct alternative in the following question:
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is
If two events A and B are such that P (A)
\[\left( \overline{ A } \right)\] = 0.3, P (B) = 0.4 and P (A ∩ B) = 0.5, find P \[\left( B/\overline{ A }\cap \overline{ B } \right)\].