मराठी

Assume that Each Born Child is Equally Likely to Be a Boy Or a Girl. If a Family Has Two Children, Then What is the Constitutional Probability that Both Are Girls? Given that - Mathematics

Advertisements
Advertisements

प्रश्न

Assume that each born child is equally likely to be a boy or a girl. If a family has two children, then what is the constitutional probability that both are girls? Given that

(i) the youngest is a girl                                                 (b) at least one is a girl.      

बेरीज

उत्तर

Consider the given events.
A = Both the children are girls.
B = The youngest child is a girl.
C = At least one child is a girl.

Clearly, 

\[S = \left\{ B_1 B_2 , B_1 G_2 , G_1 B_2 , G_1 G_2 \right\}\]

\[A = \left\{ G_1 G_2 \right\}\]

\[B = \left\{ B_1 G_2 , G_1 G_2 \right\} \]

\[C = \left\{ B_1 G_2 , G_1 B_2 , G_1 G_2 \right\}\]

\[A \cap B = \left\{ G_1 G_2 \right\} \text { and A } \cap C = \left\{ G_1 G_2 \right\}\]

\[\left( i \right) \text { Required probability = P }\left( A/B \right) = \frac{n\left( A \cap B \right)}{n\left( B \right)} = \frac{1}{2}\]

\[\left( ii \right) \text { Required probability = P }\left( A/C \right) = \frac{n\left( A \cap B \right)}{n\left( C \right)} = \frac{1}{3}\]

shaalaa.com
Probability Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 31: Probability - Exercise 31.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 31 Probability
Exercise 31.1 | Q 2 | पृष्ठ १७

संबंधित प्रश्‍न

A and B throw a pair of dice alternately, till one of them gets a total of 10 and wins the game. Find their respective probabilities of winning, if A starts first


A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B, If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.


Assume that each child born is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girl, (ii) at least one is a girl?


Given that the two numbers appearing on throwing two dice are different. Find the probability of the event 'the sum of numbers on the dice is 4'.


A coin is tossed three times, if head occurs on first two tosses, find the probability of getting head on third toss.


If A and B are two events such that \[ P\left( A \right) = \frac{1}{3}, P\left( B \right) = \frac{1}{4} \text{ and }  P\left( A \cup B \right) = \frac{5}{12}, \text{ then find }  P\left( A|B \right) \text{ and }  P\left( B|A \right) . \]


If P (A) = \[\frac{6}{11},\]  P (B) = \[\frac{5}{11}\]  and P (A ∪ B) = \[\frac{7}{11},\]  find

(i) P (A ∩ B)
(ii) P (A/B)
(iii) P (B/A)

A coin is tossed three times. Find P (A/B) in each of the following:

A = At most two tails, B = At least one tail.


A die is thrown three times. Find P (A/B) and P (B/A), if
A = 4 appears on the third toss, B = 6 and 5 appear respectively on first two tosses.


Mother, father and son line up at random for a family picture. If A and B are two events given by A = Son on one end, B = Father in the middle, find P (A/B) and P (B/A).


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?

A = the card drawn is black, B = the card drawn is a king.


A coin is tossed three times. Let the events AB and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find \[P \overline A \cup \overline B \] .


If A and B are two independent events such that P (A ∪ B) = 0.60 and P (A) = 0.2, find P(B).


A bag contains 3 red and 2 black balls. One ball is drawn from it at random. Its colour is noted and then it is put back in the bag. A second draw is made and the same procedure is repeated. Find the probability of drawing (i) two red balls, (ii) two black balls, (iii) first red and second black ball.


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.  


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.


The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.

 

Two dice are thrown together and the total score is noted. The event EF and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.   


A speaks truth in 75% and B in 80% of the cases. In what percentage of cases are they likely to contradict each other in narrating the same incident?

 

A bag contains 3 white, 4 red and 5 black balls. Two balls are drawn one after the other, without replacement. What is the probability that one is white and the other is black?

 

Arun and Tarun appeared for an interview for two vacancies. The probability of Arun's selection is 1/4 and that to Tarun's rejection is 2/3. Find the probability that at least one of them will be selected.


A can hit a target 3 times in 6 shots, B : 2 times in 6 shots and C : 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit?

 

Three persons ABC throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.


A bag contains 8 marbles of which 3 are blue and 5 are red. One marble is drawn at random, its colour is noted and the marble is replaced in the bag. A marble is again drawn from the bag and its colour is noted. Find the probability that the marble will be
(i) blue followed by red.
(ii) blue and red in any order.
(iii) of the same colour.


A card is drawn from a well-shuffled deck of 52 cards. The outcome is noted, the card is replaced and the deck reshuffled. Another card is then drawn from the deck.
(i) What is the probability that both the cards are of the same suit?
(ii) What is the probability that the first card is an ace and the second card is a red queen?


A bag A contains 5 white and 6 black balls. Another bag B contains 4 white and 3 black balls. A ball is transferred from bag A to the bag B and then a ball is taken out of the second bag. Find the probability of this ball being black.


The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.


A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.


One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball is transferred from first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.


A bag contains 6 red and 8 black balls and another bag contains 8 red and 6 black balls. A ball is drawn from the first bag and without noticing its colour is put in the second bag. A ball is drawn from the second bag. Find the probability that the ball drawn is red in colour.


Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.

 

If A and B are two events write the expression for the probability of occurrence of exactly one of two events.


Two dice are thrown simultaneously. The probability of getting a pair of aces is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floors is


If A and B are two events, then P (`overline A` ∩ B) =


If P (A ∪ B) = 0.8 and P (A ∩ B) = 0.3, then P \[\left( A \right)\] \[\left( A \right)\] + P \[\left( B \right)\] =


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that} P\left( A \right) \neq 0 \text{ and }  P\left( B \right) \neq 1,\text{ then } P\left( \overline{ A }|\overline{ B }\right) = \]


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A|B \right) = p, P\left( A \right) = p, P\left( B \right) = \frac{1}{3} \text{ and } P\left( A \cup B \right) = \frac{5}{9}, \text{ then} p = \]


Mother, father and son line up at random for a family photo. If A and B are two events given by
A = Son on one end, B = Father in the middle, find P(B / A).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×