मराठी

A Bag Contains 8 Marbles of Which 3 Are Blue and 5 Are Red. One Marble is Drawn at Random, Its Colour is Noted and the Marble is Replaced in the Bag. - Mathematics

Advertisements
Advertisements

प्रश्न

A bag contains 8 marbles of which 3 are blue and 5 are red. One marble is drawn at random, its colour is noted and the marble is replaced in the bag. A marble is again drawn from the bag and its colour is noted. Find the probability that the marble will be
(i) blue followed by red.
(ii) blue and red in any order.
(iii) of the same colour.

बेरीज

उत्तर

\[\text{ It is given that the bag contains 3 blue and 5 red marbles.}\]
\[\left( i \right) P\left( \text{ blue followed by red }  \right)\]
\[ = \frac{3}{8} \times \frac{5}{8}\]
\[ = \frac{15}{64}\]
\[\left( ii \right) P\left( \text{ red and blue in any order}  \right) = P\left( \text{ blue followed by red }  \right) + P\left( \text{ red followed by blue } \right)\]
\[ = \frac{3}{8} \times \frac{5}{8} + \frac{5}{8} \times \frac{3}{8}\]
\[ = \frac{15}{64} + \frac{15}{64}\]
\[ = \frac{30}{64} = \frac{15}{32}\]
\[\left( iii \right) P\left( \text{ same colour } \right) = P\left( \text{ both red } \right) + P\left( \text{ both blue }  \right)\]
\[ = \frac{5}{8} \times \frac{5}{8} + \frac{3}{8} \times \frac{3}{8}\]
\[ = \frac{25}{64} + \frac{9}{64}\]
\[ = \frac{34}{64}\]
\[ = \frac{17}{32}\]

shaalaa.com
Probability Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 31: Probability - Exercise 31.5 [पृष्ठ ७०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 31 Probability
Exercise 31.5 | Q 31 | पृष्ठ ७०

संबंधित प्रश्‍न

A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?


In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from this set and tossed five times. If all the five times, the result was heads, find the probability that the selected coin had heads on both the sides.


From a pack of 52 cards, two are drawn one by one without replacement. Find the probability that both of them are kings.


 If P (A) = \[\frac{7}{13}\], P (B) = \[\frac{9}{13}\]  and P (A ∩ B) = \[\frac{4}{13}\], find P (A/B).

 
 
 
 

If A and B are two events such that \[ P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13}, \text{ then find } P\left( \overline{ A }|B \right) . \]


If A and B are two events such that 2 P (A) = P (B) = \[\frac{5}{13}\]  and P (A/B) =  \[\frac{2}{5},\]  find P (A ∪ B).


Two coins are tossed once. Find P (A/B) in each of the following:

A = No tail appears, B = No head appears.


A pair of dice is thrown. Find the probability of getting 7 as the sum if it is known that the second die always exhibits a prime number.


A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?

A = the number of heads is two, B = the last throw results in head.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.


Given two independent events A and B such that P (A) = 0.3 and P (B) = `0.6. Find P (A ∩ overlineB ) `.


A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.


The odds against a certain event are 5 to 2 and the odds in favour of another event, independent to the former are 6 to 5. Find the probability that (i) at least one of the events will occur, and (ii) none of the events will occur.


Two cards are drawn successively without replacement from a well-shuffled deck of 52 cards. Find the probability of exactly one ace.


A speaks truth in 75% and B in 80% of the cases. In what percentage of cases are they likely to contradict each other in narrating the same incident?

 

Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?

 

A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?

 


A and B take turns in throwing two dice, the first to throw 9 being awarded the prize. Show that their chance of winning are in the ratio 9:8.


Fatima and John appear in an interview for two vacancies for the same post. The probability of Fatima's selection is \[\frac{1}{7}\]  and that of John's selection is \[\frac{1}{5}\] What is the probability that
(i) both of them will be selected?
(ii) only one of them will be selected?
(iii) none of them will be selected?


An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting
(i) 2 red balls
(ii) 2 blue balls
(iii) One red and one blue ball.


A bag contains 6 red and 8 black balls and another bag contains 8 red and 6 black balls. A ball is drawn from the first bag and without noticing its colour is put in the second bag. A ball is drawn from the second bag. Find the probability that the ball drawn is red in colour.


A four digit number is formed using the digits 1, 2, 3, 5 with no repetitions. Write the probability that the number is divisible by 5.


Three digit numbers are formed with the digits 0, 2, 4, 6 and 8. Write the probability of forming a three digit number with the same digits.


An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.


In a competition AB and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.


A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is


India play two matches each with West Indies and Australia. In any match the probabilities of India getting 0,1 and 2 points are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is


A person writes 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


Three integers are chosen at random from the first 20 integers. The probability that their product is even is 


Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


Choose the correct alternative in the following question:
Associated to a random experiment two events A and B are such that

\[P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ an d }  P\left( A \cup B \right) = \frac{4}{5}\] . The value of P(A) is

Choose the correct alternative in the following question: \[\text{ Let }  P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13} . \text{ Then } , P\left( \overline{ A }|B \right) = \]


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that} P\left( A \right) \neq 0 \text{ and }  P\left( B \right) \neq 1,\text{ then } P\left( \overline{ A }|\overline{ B }\right) = \]


Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability of getting exactly one red ball is


Mark the correct alternative in the following question:

\[\text{ Let A and B be two events  . If } P\left( A \right) = 0 . 2, P\left( B \right) = 0 . 4, P\left( A \cup B \right) = 0 . 6, \text{ then }  P\left( A|B \right) \text{ is equal to} \]


Mother, father and son line up at random for a family photo. If A and B are two events given by
A = Son on one end, B = Father in the middle, find P(B / A).


There are two boxes I and II. Box I contains 3 red and 6 Black balls. Box II contains 5 red and black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is ' a find the value of n 


A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.


An insurance company insured 3000 cyclists, 6000 scooter drivers, and 9000 car drivers. The probability of an accident involving a cyclist, a scooter driver, and a car driver are 0⋅3, 0⋅05 and 0⋅02 respectively. One of the insured persons meets with an accident. What is the probability that he is a cyclist?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×